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Abstract

This paper develops a two-sector endogenous growth model with health
capital and examines the impact tax financed health expenditure has on
long-run growth. In this model, health capital is accumulated through
government spending as a flow channel and a capital deepening exter-
nality as a stock channel. When arguing about the problem of growth
maximizing flat tax, the latter channel plays a significant role for deter-
mining tax rate.

Keywords: Health capital; Capital deepening externality.

JEL classification numbers: E62; I10.

∗I would like to thank Tadahiko Tokita for helpful comments and suggestions. Financial
support through the Grant-in-Aid for Scientific Research, Ministry of Education, Culture,
Sports, Science and Technology of Japan is gratefully acknowledged. Any remaining errors
are my own responsibility.

†The Japan Society for the Promotion of Science, and Hitotsubashi University. Naka 2-1,
Kunitachi, Tokyo 186-8601, JAPAN (e-mail: pg01109@srv.cc.hit-u.ac.jp).

1



1 Introduction

The aim of this paper is to examine the relationship between growth of the na-
tions and government health expenditure under existing a capital deepening ex-
ternality on health capital production. An important branch in the endogenous
growth literature presents models in which government public investment pos-
itively influences the macroeconomic activities and improves its performances.
Barro (1990) first investigates the endogenous growth model in which govern-
ment spending contributes to the economic activities and plays an important
role for determining long-run growth rate of the economy. Notable extensions
of the Barro’s model are presented by Futagami et al. (1993), Greiner and
Hanusch (1998) and so on. They employ a dynamic equation of public capital
stock and derive some interesting results differ from the Barro’s model.

In the viewpoint of (macroeconomic) human capital theory, many researchers
have examined the effects government educational spending have on a country’s
growth and development; examples include Capolupo (2000) and Glomm and
Ravikumar (2001). However, human capital consists of two components; one
is “education”, and the other is “health” (see Mushkin, 1962). In this context,
it is surprising that health, which is another component of human capital, has
been largely ignored in the growth studies. Therefore, we should not forget
that health is also a significant factor for long-run growth. To treat the health
aspect in macroeconomic analysis, we introduce health capital to the model and
construct a two-sector representative agent model of endogenous growth with
the government which undertakes productive public health expenditure.1

Outstanding features in this paper relate to the technology of health capital
production. That is, we introduce a physical capital deepening externality to
the health production function. The accumulation process of health capital
also depends on this externality effect next to government health expenditure.
We can suppose the government spending channel has a “flow” effect while the
externality channel has a “stock” effect for health capital production.2 The
former channel represents a direct activity of the government and contributes
to the improvements of public health environment. Consequently, an improved
health environment positively affects the individuals’ health status. Medical
practice in a public hospital and the maintenance of an water purification plant,
which are provided by government health expenditure, are mentioned as suitable
examples. In contrast, the latter channel represents an indirectly but desirable
influence to the health status. Such the effects are derived from an improvement
in living standards. As a good example and an important channel, we can
propose the following avenue: a development in the level of economic activity

1Previous papers based on a two-sector framework containing physical and human capital
by Bond et al. (1996), Ortigueira and Santos (2002), among others investigated the funda-
mental properties of a two-sector model and especially concentrate on the analysis of dynamic
behavior of the model (i.e. “transitional dynamics”).

2The government spending channel, which is characterized by the flow effects, is often
employed in the literature of economic growth. Capolupo (2000) uses a two-sector endogenous
growth model with human capital and specifies a human capital production technology whose
productive input only depends on government educational expenditure.
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contributes to keep a better public health environment, so this will prevent an
epidemic disease. By employing the external effects of capital deepening, we
characterize the stock effects in health capital production.

An additional feature of the present model is that the flow effects are exter-
nal factor for individuals’ economic behaviors in particular for their investment
decisions as well as the case of the stock effects. Therefore, the agents per-
form their economic activities with ignoring the accumulation processes of own
health capital.3 This reflects the fact that the public health policies of the gov-
ernment in many countries have played a central role for healthy management
of individuals. Such a tendency will be observed especially in the developing
countries. Perhaps it is natural to assume that the large part of public health is
provided by the government. Within this framework, we analyze theoretically
the impacts tax financed health expenditure have on long-run growth of the
economy and discuss about the problem of growth maximizing flat tax rate.

To confirm an explicit relationship between growth rate and tax level which
finances government health spending, we need for calibrating the present model.
However, in this paper, we only propose the theoretical result of the model as a
preliminary result. In the immediate paper succeeding to the present analysis,
we will proceed the calibration studies of the model.

The rest of the paper is organized as follows. In Section 2 we present a
simple model and investigate its equilibrium properties. Section 3 summarizes
the preliminary results of the model.

2 Simple model

2.1 Production technologies

We present in this section a two-sector endogenous growth model with health
capital accumulation (H) and investigate the decentralized economy. Our model
is an extended version of Capolupo (2000). The two sectors are composed of
the goods production sector and the health capital creation sector, respectively.
The evolution of health capital accumulation is an autonomous process which
is accelerated by both government health expenditure and the external effects
from capital deepening. The goods production function is given by

Y (t) = K(t)α[H(t)L(t)]1−α, where α ∈ (0, 1). (1)

In Eq.(1), Y (t) is the total output, K(t) represents the aggregate stock of phys-
ical capital, H(t) is the level of health capital and L(t) denotes the total labor
force which is identical with the total population in this model.4 This produc-
tion function is also assumed to exhibit constant returns to scale.

Produced goods may be any consumed, invested to the accumulation of
physical capital or expended to the maintenance of health capital as a gov-
ernmental activity. We then assume that the evolution of physical capital is

3In contrast with our model, van Zon and Muysken (2001) investigated the model incor-
porating the agents’ investment choices for own health capital accumulation.

4When there is no danger of misinterpretation, we omit the time argument t.
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governed by the familiar process of K̇ = Y −C−G and that government health
expenditure is financed by a proportional tax (an exogenous flat tax rate) on
output τY ; i.e. G = τY (τ ∈ (0, 1)). The government balances its budget at
each point in time. From Eq.(1)

K̇ = Kα(HL)1−α − C − G = (1 − τ)Kα(HL)1−α − C. (2)

As noted above, health capital accumulation is covered by both government
expenditure G and the capital deepening externality f(k̂). Therefore, the evo-
lution of health capital is as follows:

Ḣ = AGf(k̂), (3)

where f(0) = 0, f ′(k̂) > 0 and f ′′(k̂) < 0. A > 0 is a constant parameter related
to the efficiency of health capital production. Moreover, for f(k̂), we assume
it well-behaved function and impose the Inada conditions : limk̂→0 f ′(k̂) = +∞
and limk̂→+∞ f ′(k̂) = 0. We now define k̂≡K̄/H̄L. k̂ is the social average level of
the physical capital/effective labor ratio which brings about the external effects
of capital deepening for health capital accumulation. Such the effects represent
a social benefit derived from an improvement in living standards. As an earlier
contribution, we should mention the following paper. Marvin Frankel (1962)
employed an economy-wide development index to the goods production func-
tion at firm level, which is similar to the specification of the external effects
we defined in this paper.5 However, in the present model, such the index only
affects the evolution of health capital. The “learning-by-doing” models of Ar-
row (1962), Sheshinski (1967) and Romer (1986) also developed the similar
ideas.6 Due to the properties of f(k̂), we specify the following functional form:

f(k̂) = f

(
K̄

H̄L

)
=

(
K̄

H̄L

)ε

, where ε ∈ (0, 1). (4)

Using the relation of Eq.(4), we can rewrite Eq.(3) to have

Ḣ = AG

(
K̄

H̄L

)ε

. (5)

2.2 Preference

The representative agent chooses the level of consumption and the investment
level of physical capital to maximize own intertemporal utility. For analyti-
cal convenience, we employ the logarithmic preference. Formally, the agent’s
dynamic optimization problem is given as

max
C(t)

V (K(0)) =

∫ +∞

0

ln C(t)e−ρtdt, (6)

subject to Eq.(2), K(0) = K0 > 0, where ρ > 0 is a constant subjective rate of
time preference.

5The first paper to give much attention to the importance of Frankel’s paper in the relevant
field was Cannon (2000).

6In contrast with our model, just like Frankel (1962), they also employ the goods produc-
tion function containing the “social level” of capital as well as the private capital.
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2.3 Solving the model

In our model environment, both government expenditure and the effects of cap-
ital deepening are external for the agent’s economic behavior. The agent then
disregards the creation process of own health capital. As a result, the present
model is similar to the conventional one-sector neoclassical growth model. For
analytical simplicity, we now set the total labor force normalized to unity
(L = 1). To solve the corresponding dynamic optimization problem, we de-
fine the current-value Hamiltonian H:

H ≡ lnC + λ[(1 − τ)KαH1−α − C], (7)

where λ corresponds to the co-state variable related to physical capital K. For
obtaining an interior solution, the first-order conditions are listed below:

1

C
= λ, (8)

λ̇ = −λα(1−τ)Kα−1H1−α + λρ, (9)

plus the usual transversality condition,

lim
t→+∞

λ(t)K(t)e−ρt = 0. (10)

Using Eqs.(8) and (9), we can derive the formula related to the rate of
growth of consumption:

gC≡Ċ

C
= α(1 − τ)

(
K

H

)α−1

− ρ, (11)

where gx denotes the equilibrium growth rate of placeholder x.

2.4 Equilibrium path

Let us characterize here the equilibrium of the model. Since L = 1, substituting
the relation of G = τY = τKαH1−α into Eq.(5) leads to the following dynamical
process of health capital accumulation:

Ḣ = AτKαH1−α

(
K̄

H̄

)ε

. (12)

Rearranging Eq.(12)

Ḣ

H
= Aτ

(
K

H

)α (
K̄

H̄

)ε

. (13)

At the equilibrium, of course, K̄, H̄ must be set equal to K, H , respectively.
Applying these expressions to Eq.(13) to obtain

gH ≡ Ḣ

H
= Aτ

(
K

H

)α+ε

. (14)
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On the balanced growth path (BGP), gY , gC , gK and gH are all equal to g;
i.e. g = gY = gC = gK = gH .7 Therefore, from Eq.(14), we can derive

K

H
=

( g

Aτ

) 1
α+ε

. (15)

Putting Eq.(15) into Eq.(11), we obtain the equilibrium growth rate along the
BGP. That is,

g = α(1 − τ)
( g

Aτ

)α−1
α+ε − ρ. (16)

From Eq.(16), we find that the equilibrium growth rate of the economy (g)
depends on the parameters (α, τ , A, ε, ρ).

Proposition 1 The equilibrium growth rate at the BGP is determined by the
structural parameters of (α, τ , A, ε, ρ).

Proof : See Eq.(16).

As for the equilibrium of the model, we can refer to the following result.

Proposition 2 (Existence and Uniqueness of the Equilibrium) There ex-
ists a unique equilibrium with a positive solution in this model.

Proof : First, rewriting Eq.(16) to obtain g + ρ = α(1 − τ)
(

g
Aτ

)(α−1)/(α+ε)
.

Here, we denote the LHS and the RHS of this equation by χ(g) and Γ(g),
respectively. At the first quadrant in (g, χ)-plane, χ is a very simple linear
function of g with a positive slope. On the other hand, Γ is a strictly decreas-
ing and a strictly convex function of g in the same quadrant. That is, simple
calculation leads to Γ′(g) = α(1 − τ)

(
α−1
α+ε

)
(Aτ)(1−α)/(α+ε)g−(1+ε)/(α+ε). There-

fore we have limg→0 Γ(g) = +∞, limg→+∞ Γ(g) = 0, limg→0 Γ′(g) = −∞ and
limg→+∞ Γ′(g) = 0. From these functional properties, two functions χ and Γ
inevitably intersect in the first quadrant only once.

Typical case is shown in Figure 1.8 This figure is depicted under standard
parameter values which are often employed in the growth literature (e.g. Lucas,
1988, 1990; King and Rebelo, 1990; Jones et al., 1993; Capolupo, 2000; Das-
gupta, 2001).9 Benchmark parameters we used here are listed below; (ρ, α, τ ,
A, ε)=(0.02, 0.30, 0.10, 0.10, 0.20). These parameterization problems are taken

7From Eq.(8), we obtain λ(t) = λ(0)e−gt. On the other hand, the relation K̇/K =
g yields K(t) = K(0)egt. These relations imply λ(t)K(t)e−ρt = λ(0)K(0)e(−gt+gt−ρt) =
λ(0)K(0)e−ρt. Since it assumed earlier ρ > 0, a necessary condition for an optimum in
Eq.(10) is surely satisfied.

8Note that the function Γ is plotted the relation between the horizontal axis and the left-
vertical axis, while the function χ is plotted the relation between the horizontal axis and the
right-vertical axis.

9From these papers, for example, the relevant range for ρ is approximately 0.01-0.04.
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Figure 1: Existence and uniqueness of positive solution

up again later. According to author’s calculation under these parameter values,
the equilibrium growth rate is approximately equal to 3.2%.10

Further examining Eq.(16), we ask what effect an increase in τ has on the
growth rate at the BGP. By total differentiating Eq.(16), we obtain

dg

dτ
=

α
(

g
Aτ

)α−1
α+ε

{−1 − (
1−τ

τ

) (
α−1
α+ε

)}
1 + Γ

(
1−α
α+ε

) (
1
g

) , (17)

where Γ ≡ α(1−τ)
(

g
Aτ

)(α−1)/(α+ε)
> 0. In the RHS of Eq.(17), the denominator

is definitely positive. Then the effects of changes in tax rate on growth rate
are determined by the signs of the numerator. The results are summarized as
follows.

dg

dτ
> 0 ⇐ if τ <

1 − α

1 + ε
,

dg

dτ
= 0 ⇐ if τ =

1 − α

1 + ε
,

dg

dτ
< 0 ⇐ if τ >

1 − α

1 + ε
.

From these results, we find that the relation between growth rate and pro-
portional tax rate has a hump-shape in (τ , g)-plane. Note that the growth
maximizing rate of tax is τ = (1 − α)/(1 + ε).11

10As an additional example, we present the case in which the degree of externality is
relatively high. For an increased value ε = 0.40 (other parameter values are unchanged), the
growth rate is approximately equal to 4.3%.

11Contrary to the Barro’s (1990) result, in general, the tax rate which maximizes economic
growth does not agree with the tax rate which maximizes welfare (see for example Futagami
et al., 1993; Greiner and Hanusch, 1998). However, in this paper, we will not take up the
welfare aspect.
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Finally, we should refer to the stability of the equilibrium. As will be pre-
sented in Appendix, the equilibrium of the present model is saddle-path stable.
This result is directly derived from the Jacobian properties in the reduced two-
dimensional dynamical system. As a result, the following holds:

Proposition 3 (Stability of the Equilibrium) Since DetJ∗ < 0 and the
Jacobian is 2 × 2, the equilibrium is locally unique, and then the system is
saddle-path stable.

Proof : See Appendix.

3 Results

Based on the previous analysis, we can calculate numerically the growth maxi-
mizing tax rate. The tax rate we obtained theoretically is τ = (1 − α)/(1 + ε).
Therefore, the relation between physical capital share in goods production and
the external effects from capital deepening directly determines the growth max-
imizing flat tax rate in this economy. Following Lucas (1988), Capolupo (2000)
and others, we assume that the range for physical capital share is 0.25-0.35.
In such a range, we select three-benchmark cases: α = 0.25, 0.30, 0.35. On the
other hand, the relevant value for externality is unclear. To our knowledge,
the empirical evidence on this value has never been reported in the literature
so far. Consequently, as a tentative assumption, we set the range for external-
ity is ε < 0.5. This range follows the value for human capital externality (in
the goods production sector) reported by Lucas (1988).12 Roughly speaking,
it seems reasonable to suppose that the capital deepening externality is not so
large. Three-benchmark capital shares as given, Figure 2 represents the relation
between the growth maximizing tax rate and the degree of external effects.

Figure 2 shows the basic properties of the model. When the degree of
external effects is fixed, the lower (higher) physical capital share case needs
a higher (lower) rate of tax for a country’s growth rate maximizes. These
contrasting results are explained as follows. When the case of lower capital
share (e.g. α = 0.25), it is necessary for maximizing output growth to input the
higher level of health capital into goods production. Then the degree of capital
deepening externality as given, the flat tax rate must be a higher value. In the
same way, we can find that the case of higher capital share (e.g. α = 0.35) does
not need so a higher tax rate compared with the case of lower capital share.

Finally, when we focus on the degree of capital deepening externality, an-
other important result is obtained (see also Figure 2). If the level of externality
is relatively high, the government does not need to set a higher tax rate for
maximizing growth rate. Government size may be then “small”. Hence, the
higher the capital deepening externality in health production the lower the flat
tax rate for growth maximization.13 Realistically speaking, it is likely that the

12Specifically, his estimate on the degree of human capital externality is 0.417.
13Consider the case α = 0.30 as an example. It is shown that a rise in the degree of capital

deepening externality from 0.20 to 0.40 reduces the growth maximizing tax rate by 8.3%
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Figure 2: Growth maximizing tax rate

external effects, which represent an improvement in living standards, have a
considerable impact on health capital accumulation. Therefore, under the sit-
uation that productive health expenditure is implemented, if the policymaker
wants to maximize a country’s growth rate as a principal policy target, his
adequate evaluation on this externality will lead to the determination of an
appropriate tax rate.

Appendix

Note on local stability
We define the following new stationary variables which will be constant along
the BGP:

X≡C

K
,

Z≡K

H
.

From these definitions, we obtain the following expressions:

Ẋ

X
=

Ċ

C
− K̇

K
, (A1)

Ż

Z
=

K̇

K
− Ḣ

H
. (A2)

Using Eqs.(2), (11) and (14), Eqs.(A1) and (A2) are transformed by

Ẋ

X
= X + (α − 1)(1 − τ)Zα−1 − ρ, (A3)

Ż

Z
= −X + (1 − τ)Zα−1 − AτZα+ε. (A4)
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Original three-dimensional dynamical system (C, K, H) is completely trans-
formed by Eqs.(A3) and (A4). On the BGP, the relations of gX = gZ = 0 are
satisfied. Here, let the values for X and Z at the BGP denote X∗ and Z∗, re-
spectively. From Eqs.(A3) and (A4), these values must be satisfied the following
simultaneous equations:

X∗ + (α − 1)(1 − τ)(Z∗)α−1 = ρ,

X∗ = (1 − τ)(Z∗)α−1 − Aτ(Z∗)α+ε.

Consequently, the Jacobian evaluated at the BGP (J∗) is given by

J∗ =

[
∂Ẋ
∂X

∂Ẋ
∂Z

∂Ż
∂X

∂Ż
∂Z

]
=

[
X∗ (α − 1)2(1 − τ)X∗(Z∗)α−2

−Z∗ [(α − 1)(1 − τ)(Z∗)α−1 − Aτ(α + ε)(Z∗)α+ε]

]
.

The determinant of J∗ is calculated as follows:

DetJ∗ = − [
α(1 − α)(1 − τ)X∗(Z∗)α−1 + Aτ(α + ε)X∗(Z∗)α+ε

]
< 0,

where [α(1 − α)(1 − τ)X∗(Z∗)α−1 + Aτ(α + ε)X∗(Z∗)α+ε] is positive. Hence,
at least one eigenvalue is negative (or has negative real part). Since DetJ∗

is always negative, we find that the equilibrium is locally unique, so that the
dynamical system is saddle-path stable at the neighborhood of the BGP. As
noted in Harrison and Weder (2002), if DetJ∗ < 0 and the Jacobian is 2 × 2
matrix, the saddle-path stability does not depend on the signs of trace (TrJ∗).
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