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Abstract

For parameters of stationary processes with zero mean and spectral density, se-
quential procedures are proposed for constructing fixed size confidence ellipsoidal
regions for unknown parameters using a minimum contrast estimator. The confi-
dence ellipsoids are shown to be asymptotically consistent and the associated stop-
ping rules are shown to be asymptotically efficient as the size of the region becomes
small when the assumed parametric model is correct. Monte Carlo simulations are
given to investigate the performance of our proposed sequential procedures.

1 Introduction

It is well documented in literature that sequential sampling methods provide a useful way

of constructing confidence intervals or regions for parameters with a fixed size and a pre-

scribed coverage probability. Chow and Robbins (1965) proposed a sequential sampling

rule for constructing a fixed-width confidence interval for an unknown mean with a pre-

scribed probability and developed its asymptotic theory. This sampling rule is referred to

as the “Chow-Robbins procedure.” For details, refer to Chapter 8 of Ghosh, Mukhopadyay

and Sen (1997). Their ideas have been used to develop sequential fixed size confidence

regions for parameters associated with dependent and independent observations. For in-

dependent, identically distributed observations, we refer the reader to Srivastava (1967),

Khan (1969), Yu (1989), Woodroofe (1982), and Chang and Martinsek (1992).

With regard to time series, Sriram (1987) developed a point and interval estimation

for the mean of a first order autoregressive (AR(1)) model. Fakhre-Zakeri and Lee (1992,

1993) later considered a sequential point and fixed-width confidence interval estimation

for the mean of a scalar- or vector-valued linear process. Sequential procedures dealing
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with both point estimation and fixed accuracy confidence sets of unknown autoregressive

coefficients have been considered by Lee (1994). Sriram (2001) proposed a stopping rule

to construct a sequential fixed-size confidence ellipsoid for the parameters in threshold

autoregressive (TAR) models. Shiohama and Taniguchi (2001) considered the sequential

estimation problems for functional of the spectral density of a Gaussian stationary pro-

cess. Recently Shiohama and Taniguchi (2004) considered the sequential point estimation

problems arising in time series regression models.

In this article, we assume that the observations are stationary processes with para-

metric spectral density fθ(λ), where θ is an unknown parameter. In order to esti-

mate θ, we use a minimum contrast estimator, θ̂
(MCE)
n , which minimizes the criterion

D(fθ, f̂n) =
∫ π

−π
K{fθ(λ)/f̂n(λ)}dλ with respect to θ, where f̂n(λ) is a non-parametric

spectral estimator of fθ(λ), and K(·) is an appropriate function. It was shown that

under appropriate conditions, the main order term of
√

n(θ̂
(MCE)
n − θ) can be written

as F =
√

n
∫

Ψ(λ){f̂n(λ) − f(λ)}dλ, where Ψ(λ) is an integrable function. Although

the nonparametric spectral estimator deviates from f(λ) by a probability order that is

greater than n−1/2, Taniguchi (1987) showed that the integrable functionals obey the
√

n-

consistent asymptotics, and that θ̂
(MCE)
n is asymptotically efficient if f = fθ. Therefore,

it can be seen that the integral functional F is the key quantity. The sequential esti-

mation problem of this integral functional has been studied by Shiohama and Taniguchi

(2001). The minimum contrast estimator has the following desirable property. For vari-

ous spectra fθ(λ), by appropriately selecting the function K(·) in D(fθ, f̂n) we can obtain

the non-iterative efficient estimators of θ in explicit forms, whereas with the exception

of autoregressive models, the (quasi) maximum likelihood estimations procedure requires

iterative methods. For details, refer to Taniguchi (1987) and Taniguchi and Kakizawa

(2000).

In Section 2, we introduce the minimum contrast estimator (MCE) and construct se-

quential fixed size confidence regions for θ based on it. We then state the main theorem

which establishes the asymptotic consistency and efficiency of our sequential procedure.

Proofs are provided in Section 3. Section 4 comprises a brief discussion on estimation

with fixed proportional accuracy and estimation of a particular linear combination of the

components of θ. Section 5 contains several Monte Carlo simulations that demonstrate

the performances of our sequential procedure based on the MCE. In this paper, we denote

the set of all integers by Z.
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2 Stopping Rule and Main Theorem

Let {Xt, t ≥ 0} be a scalar-valued linear process of the form

Xt =

∞∑
j=0

ajεt−j, t ∈ Z, (2.1)

where {εt} is a sequence of i.i.d. random variables with E{εt} = 0, E{ε2
t} = σ2 and

E{ε2p
t } < ∞, for p > 2. Then the process {Xt; t ∈ Z} is a second-order stationary process

with spectral density f(λ). Let F be the space of spectral densities defined by

F =

⎧⎨
⎩f ; f(λ) =

σ2

2π

∣∣∣∣∣
∞∑

j=0

aje
−ijλ

∣∣∣∣∣
2

, there exist C < ∞ and δ > 0 such that

∞∑
j=0

(1 + j2)|aj| ≤ C,

∣∣∣∣∣
∞∑

j=0

ajz
j

∣∣∣∣∣ ≤ δ, for all |z| ≤ 1

}
.

Denote In(λ), the periodogram constructed from a realization {X1, . . . , Xn}, by

In(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xte
itλ

∣∣∣∣∣
2

.

We estimate f(λ) by the weighted averages of the periodogram In(λ), with a spectral

window Wn(λ) as the weight, i.e.,

f̂n(λ) =

∫ π

−π

Wn(λ − µ)In(µ)dµ. (2.2)

The following conditions are imposed on Wn(·).

(A.1) (i) Wn(λ) can be expressed as

Wn(λ) =
1

2π

M∑
l=−M

w

(
l

M

)
e−ilλ.

(ii) w(x) is a continuous, even function with w(0) = 1, and satisfies{
|w(x)| ≤ 1,∫ ∞
−∞ w(x)2dx < ∞, limx→0

1−w(x)
|x|2 = κ2 < ∞.

(iii) M = M(n) satisfies

n1/4M + M/n1/2 → 0 as n → ∞.
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Concrete examples of Wn(·) satisfying (A.1) can be found in Hannan (1970), Brillinger

(1981), and Robinson (1983). We then define the criterion that measures the nearness of

fθ to f as

D(fθ, f) =

∫ π

−π

K{fθ(λ)/f(λ)}dλ.

The following are examples of K(·):

(i) K(x) = log x + x−1,

(ii) K(x) = − log x + x,

(iii) K(x) = (log x)2,

(iv) K(x) = x log x − x,

(v) (xα − 1)2, 0 < α < ∞.

We impose the following assumptions on K(·) and fθ(λ).

(A.2) (i) K(x) is a three times continuously differentiable function in (0,∞) and has a

unique minimum at x = 1.

(ii) The spectral model fθ(λ) is three times continuously differentiable with respect

to θ, and every component of the second derivative ∂2fθ/∂θ∂θ′ is continuous in λ.

In order to estimate the unknown θ, since f(λ) is unknown, we estimate f(λ) by a

nonparametric estimator (2.2) satisfying (A.1). Therefore, a semiparametric estimator

θ̂
(MCE)
n of θ is defined as

θ̂(MCE)
n = argmin

θ∈Θ
D(fθ, f̂n(λ)). (2.3)

Suppose that Assumptions (A.1) and (A.2) hold and f = fθ, then

√
n(θ̂(MCE)

n − θ)−→
L

N(0, F (θ)−1), (2.4)

where

F (θ) =
1

4π

∫ π

−π

∂

∂θ
log fθ(λ)

∂

∂θ′
log fθ(λ)dλ, (2.5)

which is referred to as the Fisher information matrix in time series analysis; refer to

Taniguchi (1987) and Taniguchi and Kakizawa (2001). If we select an appropriate K(·),
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the minimum contrast estimator (2.3) provides explicit, non-iterative, and efficient esti-

mators for various spectral parameterizations.

Suppose that the spectral density fθ(λ) is parameterized as

fθ(λ) = S{Aθ(λ)}, (2.6)

where Aθ(λ) =
∑

j θj exp(ijλ) and S(·) is a continuously three times differentiable bijec-

tive function. In order to obtain non-iterative estimators, the following relation should

be imposed;

K

[
S(Aθ(λ))

f(λ)

]
= c1(λ)Aθ(λ)2 + c2(λ)Aθ(λ) + c3(λ) + c4 log S{Aθ(λ)}, (2.7)

where ci(λ), i = 1, 2, 3, are functions that are independent of θ, and c4 is a constant that

is independent of θ and λ. If we estimate an innovation-free parameter θ = (θ1, . . . , θq)
′,

then from Theorem 6 of Taniguchi (1987), we observe that the the non-iterative estimator

is given by

θ̂(MCE)
n = R̂−1r̂, (2.8)

where

R̂ = [R̂(j − l)] =

∫ π

−π

G1(f̂n(λ)) cos(j − l)λdλ, (2.9)

and

r̂ = [r̂(l)] =

∫ π

−π

G2(f̂n(λ)) cos lλdλ. (2.10)

In this case, Gi(·), i = 1, 2, satisfies a uniform Lipschitz condition (of order 1) in [−π, π].

For AR models with spectral density fθ(λ) = σ2/2π|∑p
j=0 θje

ijλ|−2, where θ0 = 1

and
∑q

j=0 θjz
j �= 0 for |z| ≤ 1, select KAR(x) = log x + 1

x
; therefore, the non-iterative

estimator is obtained by selecting G1(x) = G2(x) = x. For MA models with spectral

density fθ(λ) = σ2/2π|∑p
j=0 θje

ijλ|2, where θ0 = 1 and
∑q

j=0 θjz
j �= 0 for |z| ≤ 1, select

KMA(x) = − log x + x; therefore, the non-iterative estimator is obtained by selecting

G1(x) = G2(x) = x−1. In the case where fθ(λ) = σ2 exp
[∑q

j=0 θj cos(jλ)
]
, θ0 = 1 (refer

to Bloomfield (1973)), select KE(x) = (log(x))2; therefore, the non-iterative estimator is

obtained by selecting G1(x) = 1/2 and G2(x) = log x.

Based on the asymptotic normality result for θ̂
(MCE)
n in (2.4), it follows that

n(θ̂(MCE)
n − θ)′F (θ̂(MCE)

n )(θ̂(MCE)
n − θ)−→

L
χ2(q), as n → ∞, (2.11)
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where

F (θ̂(MCE)
n ) =

1

4π

[∫ π

−π

∂

∂θ
log fθ(λ)

∂

∂θ′
log fθ(λ)dλ

]
θ=θ̂

(MCE)
n

. (2.12)

For any d > 0, let

Rn =
{
θ ∈ R

q : (θ − θ̂(MCE)
n )′F (θ̂(MCE)

n )(θ − θ̂(MCE)
n ) ≤ d2λ(F (θ̂(MCE)

n ))
}

, (2.13)

where λ(F (θ̂
(MCE)
n )) is the smallest eigenvalue of F (θ̂

(MCE)
n ). Then, Rn defines an ellipsoid

with a maximum axis equal to 2d (d > 0), and it is in this sense that the size of the ellipsoid

is fixed. Moreover, for any α ∈ (0, 1), n0(d) is determined by

n0(d) = smallest integer ≥ a2/d2λ(F (θ)), (2.14)

where a2 satisfies P [χ2(q) ≤ a2] = 1 − α, and λ(F (θ)) is the smallest eigenvalue of the

covariance matrix F (θ). From (2.13), for θ ∈ Θ, we have

lim
d→0

P (θ ∈ Rn0(d)) = 1 − α. (2.15)

This result in (2.15) shows that for a small value of d, the sample size n0(d) yields

an ellipsoidal confidence region of a fixed size and a prescribed coverage probability.

However, the sample size n0(d) cannot be used in practice because it depends on unknown

parameters. In order to overcome this, we define a stopping rule

Td = inf
{
n ≥ m,n ≥ a2/d2λ(F (θ̂(MCE)

n ))
}

, (2.16)

where m is the initial sample size. The confidence ellipsoid RTd
has the length of the major

axis equal to 2d. Moreover, we have the following theorems whose proofs are provided in

Section 3.

Theorem 2.1 Suppose that Assumptions (A.1) and (A.2) hold, and θ ∈ Θ. Then, for

the stopping rule Td defined in (2.16), the following holds.

(i) Td/n0(d) → 1 a.s. as d → 0, (2.17)

where d0(d) is as in (2.14), and

(ii)
√

Td(θ̂
(MCE)
Td

− θ)−→
L

N(0, F (θ)−1) (2.18)

(iii) lim
d→0

P [θ ∈ RTd
] = 1 − α (asymptotic consistency). (2.19)
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Theorem 2.2 Suppose that Assumptions (A.1) and (A.2) hold, and θ ∈ Θ. Then, for

the stopping rule Td and n0(d) defined in (2.16) and (2.14), respectively, the following

holds.

(i) {Td/n0(d); 0 < d < 1} is uniformly integrable (2.20)

and

(ii) lim
d→0

E(Td/n0(d)) = 1 (asymptotic efficiency). (2.21)

The third part of Theorem 2.1 states that the coverage probability of the sequential fixed

size confidence ellipsoid is asymptotically, as the size of the ellipsoid approaches zero, the

desired value 1 − α. Theorem 2.2 asserts that this is achieved with an expected sample

size that is asymptotically equivalent to the nonrandom sample size that would have been

used, had λ(F (θ)) been known.

3 Proofs

In this section, we present proofs for Theorems 2.1 and 2.2. The proofs for these Theorems

are based on the following lemmas. Let θ = (θ1, . . . , θq)
′ and θ̂

(MCE)
n = (θ̂

(MCE)
n,1 , . . . , θ̂

(MCE)
n,q )′.

||{·}||p denotes the Lp-norm, i.e., ||{·}||p = [E|{·}|p]1/p.

Lemma 3.1 Suppose that (A.1) and (A.2) hold. If f = fθ, where θ is the innovation free

parameter, then

max
1≤i≤q

∥∥∥θ̂
(MCE)
n,i − θi

∥∥∥
p

= O(M · n−1/2). (3.1)

Proof. To prove (3.1), it suffices to show that for any constant vector α = (α1, . . . , αq)
′∥∥∥α′(θ̂(MCE)

n − θ)
∥∥∥

p
= O(M · n−1/2). (3.2)

From (2.8), note that

α′(θ̂(MCE)
n − θ) = α′(R̂−1r̂ − R−1r)

= α′(R−1(r̂ − r) + (R̂−1 − R−1)r̂)

= α′(R−1(r̂ − r) + R̂−1(R̂ − R)R−1r̂), (3.3)

where

R = [R(j − l)] =

∫ π

−π

G1(fθ(λ)) cos(j − l)λdλ (3.4)
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and

r = [r(l)] =

∫ π

−π

G2(fθ(λ)) cos lλdλ. (3.5)

Using the Minkowski inequality, we observe∥∥∥α′(θ̂(MCE)
n − θ)

∥∥∥
p

≤ ∥∥α′R−1(r̂ − r)
∥∥

p
+

∥∥∥α′R̂−1(R̂ − R)R−1)r̂
∥∥∥

p

= L1 + L2 (say). (3.6)

We first evaluate L1 in (3.6). From the Minkowski inequality,

‖L1‖p =

∥∥∥∥∥
q∑

i,j=1

αiR
−1
ij (r̂(j) − r(j))

∥∥∥∥∥
p

≤
q∑

i,j=1

|αi||R−1
ij | ‖r̂(j) − r(j)‖p , (3.7)

where R−1
ij is the (i, j)th element of R−1. Note that G2(·) satisfies the Lipschitz condition

of order 1, (2.10), and (3.5); we observe that for some constants K1 > 0 and K2 > 0,

‖r̂(j) − r(j)‖p =

∥∥∥∥
∫ π

−π

(G2(f̂n(λ) − G2(fθ(λ))) cos jλdλ

∥∥∥∥
p

≤
∥∥∥∥
∫ π

−π

K1|f̂n(λ) − fθ(λ)| cos jλdλ

∥∥∥∥
p

≤ K1

∥∥∥∥∥ sup
|λ|≤π

|f̂n(λ) − fθ(λ)|
∫ π

−π

cos jλdλ

∥∥∥∥∥
p

≤ K2

∥∥∥∥∥ sup
|λ|≤π

|f̂n(λ) − fθ(λ)|
∥∥∥∥∥

p

. (3.8)

From the equation (4.7) by Shiohama and Taniguchi (2004), we have∥∥∥∥∥ sup
|λ|≤π

∣∣∣f̂n(λ) − fθ(λ)
∣∣∣
∥∥∥∥∥

p

= (M · n−1/2). (3.9)

Hence L1 = O(M · n−1/2). L2 can be evaluated as follows:

‖L2‖p =

∥∥∥∥∥
q∑

i,j,k,l=1

αiR̂
−1
ij (R̂(j − k) − R(j − k))R−1

kl r̂(l)

∥∥∥∥∥
p

≤
q∑

i,j,k,l=1

|αi||R−1
kl |

∥∥∥R̂−1
ij r̂(l)(R̂(j − k) − R(j − k))

∥∥∥
p

≤
q∑

i,j,k,l=1

|αi||R−1
kl |

∥∥∥R̂−1
ij r̂(l)

∥∥∥
2p

∥∥∥R̂(j − k) − R(j − k)
∥∥∥

2p
. (3.10)
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As before we observe ∥∥∥R̂(j − k) − R(j − k)
∥∥∥

2p
= O(M · n−1/2). (3.11)

Since ∥∥∥R̂−1
ij r̂(l)

∥∥∥
2p

= O(1), (3.12)

the desired result can be obtained. �

Lemma 3.2 Suppose that (A.1) and (A.2) hold. If f = fθ, where θ is the innovation-free

parameter, then we have

max
1≤i,j≤k

∥∥∥Fij(θ̂
(MCE)
n ) − Fij(θ)

∥∥∥
p/2

= O(M · n−1/2), (3.13)

where Fij(θ̂
(MCE)
n ) and Fij(θ) are the (i, j)th elements of F (θ̂

(MCE)
n ) and F (θ), respectively.

Proof. On the basis of the mean-value theorem, we have

Fij(θ̂
(MCE)
n ) − Fij(θ) =

∂

∂θ
Fij(θ

∗)(θ̂(MCE)
n − θ), (3.14)

where ‖θ̂(MCE)
n − θ∗‖ ≤ ‖θ̂(MCE)

n − θ‖. On the basis of Theorem 3 by Taniguchi (1987),

we have θ̂
(MCE)
n −→

p
θ, which implies that θ∗−→

p
θ; hence,

∥∥∥Fij(θ̂
(MCE)
n ) − Fij(θ)

∥∥∥
p/2

=

∥∥∥∥ ∂

∂θ
Fij(θ

∗)(θ̂(MCE)
n − θ)

∥∥∥∥
p/2

≤
∥∥∥∥ ∂

∂θ
Fij(θ

∗)

∥∥∥∥
p

∥∥∥(θ̂(MCE)
n − θ)

∥∥∥
p
. (3.15)

From (A.2) we have ‖∂/∂θFij(θ
∗)‖p = O(1). Hence, from Lemma 3.1, we obtain (3.13).

�

Lemma 3.3 Under the same assumptions as those in Lemma 3.2, we have

‖λ(F (θ̂(MCE)
n )) − λ(F (θ))‖p/2 = O(M · n−1/2). (3.16)

In particular, for any ε > 0,

P (|λ(F (θ̂(MCE)
n )) − λ(F (θ))| > ε) = O(Mp · n−p/2). (3.17)
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Proof of Theorem 2.1 In order to prove (i), we observe from (3.17) and the Borel-

Cantelli lemma that

λ(F (θ̂(MCE)
n )) → λ(F (θ)) a.s. as n → ∞. (3.18)

Let f(n) = nλ(F (θ̂
(MCE)
n ))/λ(F (θ)) and t = a2/d2λ(F (θ)) = n0(d) → ∞ as d → 0. Then

the conditions of Lemma 1 of Chow and Robbins (1965) are satisfied, and hence

lim
t→∞

Td/t = lim
d→0

Td/n0(d) = 1 a.s..

It is clear that (ii) implies (iii). So, only (ii) needs to be proved. From Theorem 5 of

Taniguchi (1987) we have

√
n

(
θ̂(MCE)

n − θ
)

=
√

n

∫ π

−π

ρfθ
{f̂n(λ) − fθ(λ)}dλ + op(1), (3.19)

where

ρfθ
=

[∫ π

−π

∂

∂θ
log fθ(λ)

∂

∂θ′
log fθ(λ)

]−1
∂

∂θ
f−1

θ (λ). (3.20)

This implies that the limiting distribution of
√

n(θ̂
(MCE)
n − θ) is described by the integral

functional of the spectral density. Let ξn =
√

n
∫ π

−π
ρfθ

{f̂n(λ)−fθ(λ)}dλ. To show (ii), we

need to show that the sequence {ξn, n ≥ 1} is uniformly continuous in probability, that

is,

P

{
max

0≤k≤nδ
‖ξn+k − ξn‖ ≥ ε

}
< ε for all n ≥ 1, (3.21)

where ‖ · ‖ is the Euclidian norm. Essentially,

‖ξn+k − ξn‖
=

∥∥∥∥√n + k

∫ π

−π

ρfθ
{f̂n+k(λ) − fθ(λ)}dλ −√

n

∫ π

−π

ρfθ
{f̂n(λ) − fθ(λ)}dλ

∥∥∥∥
=

∥∥∥∥√n + k

∫ π

−π

ρfθ
f̂n+k(λ)dλ −√

n + k

∫ π

−π

ρfθ
f̂n(λ)dλ +

√
n + k

∫ π

−π

ρfθ
f̂n(λ)dλ

−√
n

∫ π

−π

ρfθ
f̂n(λ)dλ − (

√
n + k −√

n)

∫ π

−π

ρfθ
fθ(λ)dλ

∥∥∥∥
≤

∥∥∥∥(
√

n + k −√
n)

∫ π

−π

ρfθ
{f̂n(λ) − fθ(λ)}dλ

∥∥∥∥ +

∥∥∥∥√n + k

∫ π

−π

ρfθ
{f̂n+k(λ) − f̂n(λ)}dλ

∥∥∥∥
It can be observed that

√
n

∥∥∥∥
∫ π

−π

ρfθ
{f̂n(λ) − fθ(λ)}dλ

∥∥∥∥ = Op(1).
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We also observe that

max
0≤k≤nδ

∥∥∥∥√n + k

∫ π

−π

ρfθ
{f̂n+k(λ) − f̂n(λ)}dλ

∥∥∥∥
= Op

(√
n
√

1 + δ max
0≤k≤nδ

∥∥∥∥
∫ π

−π

ρfθ
{f̂n+k(λ) − fθ(λ)}dλ −

∫ π

−π

ρfθ
{f̂n(λ) − fθ(λ)}dλ

∥∥∥∥
)

= Op(
√

δ), (3.22)

which, along with (3.22), implies (3.21). Therefore, using Anscombe’s theorem we obtain

√
Td

∫ π

−π

ρfθ
{f̂Td

(λ) − fθ(λ)}dλ−→
L

N(0, F (θ)−1) as d → 0, (3.23)

which implies (ii). �

On the basis of Theorem 2.1, d2Tdλ(F (θ))/a2 → 1 a.s. as d → 0. Hence, to prove

the asymptotic efficiency, it is sufficient to show that {d2Td : d ∈ (0, 1)} is uniformly

integrable.

Proof of Theorem 2.2. Let δ > 0 and Kd = [a2/d−2λ−1(F (θ))d(1 + δ)] + 1. Then, for

k ≥ Kd and some η > 0, it can be shown that

P [Td ≥ k] ≤ P
[∣∣∣λ−1(F (θ̂

(MCE)
k )) − λ−1F (θ)

∣∣∣ ≥ η
]

= O(Mp · k)−p/2), (3.24)

where (3.17) is used to obtain the last equation. This implies that
∑

k≥1 P (Td > k) < ∞.

Based on this and on the arguments by Woodroofe (1982), it follows that

{d2Td : d ∈ (0, 1)} is uniformly integrable. (3.25)

Hence, limd→0 E(Td/n0(d)) = 1. �

4 Some Related Fixed Size Confidence Sets

Fixed proportional accuracy confidence ellipsoids

Suppose θi, i = 1, . . . , q, are nonzero and at least one of the parameter values is near

the origin, then a smaller confidence ellipsoid can be constructed for θ which gives us an

improvement in the accuracy of the estimates of small coordinates. One approach is to
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construct an ellipsoidal region such that the statistical distance between θ̂
(MCE)
n and θ

is less than a certain fraction of the true value of θ(1) = min1≤j≤q |θj |. This yields the

following ellipsoidal region.

Γn =
{

z : (z − θ̂(MCE)
n )′F (θ̂(MCE)

n )(z − θ̂(MCE)
n ) ≤ d2λ(F (θ̂(MCE)

n ))θ̂(1),n

}
(4.1)

for d > 0, where θ̂(1),n = min1≤j≤q |θ̂(MCE)
n,j |. Γn defines an ellipsoid having the length of

the major axis equal to 2d
√

θ̂(1),n.

For any given α ∈ (0, 1) and d > 0, it is desired to have

P [θ ∈ Γn] ≈ 1 − α. (4.2)

Since θ̂
(MCE)
n → θ almost surely, θ̂(1),n → θ(1) a.s. as n → ∞, and therefore,

(θ̂(MCE)
n − θ)′F ′(θ̂(MCE)

n )(θ̂(MCE)
n − θ)/θ̂(1),n −→

L
χ2(q)/θ(1). (4.3)

Hence, to satisfy (4.2), we define a sample size

t0(d) = smallest integer ≥ a2/[d2λ(F (θ))θ(1)], (4.4)

where a2 and λ(F (θ)) are defined as in (2.14). Since both λ(F (θ)) and θ(1) are unknown,

it is impossible to decide the sample size in advance. This suggests a stopping time

Nd = inf{n ≥ m : n ≥ a2/[d2λ(F (θ̂(MCE)
n ))θ̂(1),n]}. (4.5)

Then we obtain the following theorem.

Theorem 4.1 Suppose that Assumptions (A.1) and (A.2) hold, and θ ∈ Θ. Then, for

the stopping rule Nd defined in (4.5), the following holds.

(i) Nd/t0(d) → 1 a.s. as d → 0, (4.6)

(ii) lim
d→0

P [θ ∈ ΓNd
] = 1 − α, (4.7)

where t0(d) is as in (4.4) and

(iii) {Nd/t0(d); 0 < d < 1} is uniformly integrable, (4.8)

(iv) lim
d→0

E[Nd/t0(d)] = 1. (4.9)
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Confidence interval for a linear combination of θ

In practice, we may only be interested in a particular linear combination of the com-

ponents of θ, rather than the entire vector. That is, for some C ∈ R
q, ‖C‖ �= 0, we

can construct a fixed-width confidence interval for C ′θ. It follows from the asymptotic

normality of θ̂
(MCE)
n that, as n → ∞,

√
n(C ′θ̂(MCE)

n − C ′θ)−→
L

N(0, C ′F (θ)−1C). (4.10)

If F (θ) were known, then for a given d > 0, α ∈ (0, 1), and the sample size is determined

by

h0(d) = smallest interger ≥ z2
α/2/[d2C ′F (θ)−1C]. (4.11)

From (4.10), we have

lim
d→0

P (C ′θ ∈ [C ′θ̂(MCE)
n − d, C ′θ̂(MCE)

n + d]) = 1 − α, (4.12)

where z2
α2 satisfies Φ(zα/2) − Φ(−zα/2) = 1 − α. However, since F (θ) is unknown, the

sample size h0(d) cannot be used. As observed previously, (4.11) suggests the stopping

rule

Hd = inf{n ≥ m : n ≥ z2
α/2/[d2C ′F (θ̂(MCE)

n )−1C]}. (4.13)

We have the following theorem.

Theorem 4.2 Suppose that Assumptions (A.1) and (A.2) hold, and θ ∈ Θ. Then, for

the stopping rules Hd and h0(d) defined in (4.13) and (4.11), respectively, the following

hold.

(i) Hd/h0(d) → 1 a.s. as d → 0, (4.14)

(ii) lim
d→0

P
[
C ′θ ∈ [C ′θ̂(MCE)

Hd
− d, C ′θ̂(MCE)

Hd
+ d]

]
= 1 − α. (4.15)

Furthermore,

(iii) {Hd/h0(d); 0 < d < 1} is uniformly integrable, (4.16)

(iv) lim
d→0

E[Hd/h0(d)] = 1. (4.17)

Theorems 4.1 and 4.2 can be proved using arguments similar in the proofs for Theorems

2.1 and 2.2, and are therefore omitted for brevity.
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5 Simulations

In this section, we present some Monte Carlo simulations to verify that our sequential

procedures are asymptotically consistent and efficient. We consider the standard Gaus-

sian AR(1), MA(1), and AR(2) models.

1. AR(1): Xt = θXt−1 + εt, θ = 0.1, 0.2, . . . , 0.9;

2. MA(1): Xt = εt + θεt, θ = 0.1, 0.2, . . . , 0.9;

3. AR(2): Xt = θ1Xt−1+θ2Xt−2+εt, where (θ1, θ2) = (1.1,−0.24), (0.6,−0.4), (0.2,−0.35),

(0.2, 0.35), (0.05, 0.35), and (1.5,−0.75).

The innovations {εt} are standard normal distributions. For the simulation study we set

n0(d) = 100, 200, 300, 400, 500, and the coverage probability as 0.90. The initial sample

size m is chosen as m = 2 for AR(1) and AR(2) models, and m = 50 for MA(1) models.

For each choice of parameters, 1000 replications of the series were generated. The results

are presented in Tables 1, 2, and 3.

As observed from Tables 1 and 2, the expected sample sizes and the coverage prob-

abilities depend on the value of θ. For smaller values of θ, the agreement between the

asymptotic theory and the simulations is better regardless of the value of d. On the

other hand, the bias in Td increases substantially with an increase in θ, while the relative

discrepancy decreases with a decrease in d. For AR(1) models, the rate of convergence

of the coverage probability is not strongly affected by θ, while that for MA(1) models

deteriorates with an increase in θ. It is also noted that for large values of θ, the standard

deviations of the expected sample size for MA(1) models are larger than those for AR(1)

models.

The situation for AR(2) models appears quite similar to what has been observed for

AR(1) models. Let π1 and π2 be the roots of the characteristic equation 1−θ1z−θ2z
2 = 0.

The absolute values of π1 and π2 are also provided in Table 3. In case of AR(2) models

with absolute values of roots close to the unit circle, the behavior of sequential procedure

exhibits a poor performance.
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Table 1. Simulation results of 90% confidence interval for AR(1) model.

d n0(d) T̄d (s.d.∗) T̄d/n0(d) c.p.∗. d n0(d) T̄d (s.d.∗) T̄d/n0(d) c.p.∗

θ = 0.1 θ = 0.2
0.164 100 99.69 (2.23) 0.9969 .917 0.161 100 100.47 (3.80) 1.0047 .904
0.116 200 199.97 (2.65) 0.9998 .914 0.114 200 200.53 (5.37) 1.0026 .913
0.094 300 299.97 (3.48) 0.9999 .901 0.093 300 300.08 (7.14) 1.0003 .890
0.082 400 400.03 (3.87) 1.0001 .908 0.081 400 400.71 (7.87) 1.0018 .914
0.073 500 499.80 (4.50) 0.9996 .912 0.072 500 500.51 (8.86) 1.0010 .901

θ = 0.3 θ = 0.4
0.157 100 101.09 (5.66) 1.0109 .910 0.151 100 102.26 (7.54) 1.0226 .921
0.111 200 201.73 (8.01) 1.0086 .907 0.107 200 202.65 (11.50) 1.0132 .907
0.091 300 302.34 (10.19) 1.0078 .900 0.087 300 302.91 (13.94) 1.0097 .901
0.078 400 401.80 (11.96) 1.0045 .914 0.075 400 402.61 (16.44) 1.0065 .907
0.070 500 502.00 (13.82) 1.0040 .897 0.067 500 502.99 (18.44) 1.0060 .906

θ = 0.5 θ = 0.6
0.142 100 104.44 (10.23) 1.0444 .886 0.132 100 107.78 (12.59) 1.0778 .874
0.100 200 203.93 (14.74) 1.0196 .909 0.093 200 207.24 (19.35) 1.0362 .896
0.082 300 306.13 (18.59) 1.0204 .895 0.076 300 308.66 (25.04) 1.0289 .886
0.071 400 406.76 (22.41) 1.0169 .909 0.068 400 407.99 (29.15) 1.0200 .883
0.064 500 506.65 (24.13) 1.0121 .908 0.059 500 508.28 (32.79) 1.0166 .898

θ = 0.7 θ = 0.8
0.117 100 111.95 (16.01) 1.1195 .880 0.098 100 120.87 (19.95) 1.2087 .863
0.083 200 213.76 (24.86) 1.0688 .888 0.070 200 222.82 (31.27) 1.1141 .883
0.068 300 311.95 (32.15) 1.0398 .889 0.057 300 326.49 (42.46) 1.0883 .858
0.059 400 412.87 (38.80) 1.0322 .879 0.049 400 426.50 (46.99) 1.0662 .890
0.053 500 515.06 (41.72) 1.0301 .890 0.044 500 527.35 (53.29) 1.0547 .897

θ = 0.9
0.072 100 150.65 (24.05) 1.5065 .768
0.051 200 257.24 (39.67) 1.2862 .827
0.041 300 352.45 (62.97) 1.1748 .864
0.036 400 454.84 (61.81) 1.1371 .891
0.032 500 553.63 (71.55) 1.1073 .900

*s.d., standard deviation; c.p., coverage probability.
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Table 2. Simulation results of 90% confidence interval for MA(1) model.

d n0(d) T̄d (s.d.∗) T̄d/n0(d) c.p.∗ d n0(d) T̄d (s.d.∗) T̄d/n0(d) c.p.∗

θ = 0.1 θ = 0.2
0.164 100 99.62 (2.75) 0.9962 .881 0.161 100 100.04 (4.96) 1.0004 .880
0.116 200 199.75 (2.98) 0.9988 .887 0.114 200 200.43 (5.60) 1.0022 .894
0.094 300 299.92 (3.68) 0.9997 .878 0.093 300 300.22 (7.00) 1.0007 .910
0.082 400 399.77 (4.12) 0.9994 .902 0.081 400 400.36 (8.00) 1.0009 .903
0.073 500 499.55 (4.60) 0.9991 .896 0.072 500 500.17 (9.28) 1.0003 .901

θ = 0.3 θ = 0.4
0.157 100 100.89 (6.49) 1.0089 .895 0.151 100 101.56 (9.14) 1.0156 .874
0.111 200 200.98 (9.10) 1.0049 .885 0.107 200 201.96 (12.13) 1.0098 .904
0.091 300 301.08 (11.28) 1.0036 .881 0.087 300 302.31 (15.16) 1.0077 .884
0.078 400 401.07 (12.63) 1.0027 .893 0.075 400 401.66 (18.01) 1.0042 .885
0.070 500 501.00 (14.41) 1.0020 .887 0.067 500 502.38 (19.04) 1.0048 .903

θ = 0.5 θ = 0.6
0.142 100 101.88 (14.14) 1.0188 .835 0.132 100 103.96 (18.26) 1.0396 .804
0.100 200 203.80 (16.51) 1.0190 .892 0.093 200 206.09 (22.72) 1.0305 .874
0.082 300 303.54 (20.25) 1.0118 .883 0.076 300 310.76 (25.03) 1.0359 .882
0.071 400 403.67 (22.64) 1.0092 .889 0.068 400 408.46 (30.05) 1.0212 .892
0.064 500 505.28 (25.19) 1.0106 .914 0.059 500 507.92 (33.09) 1.0158 .880

θ = 0.7 θ = 0.8
0.117 100 106.92 (25.49) 1.0692 .728 0.098 100 111.41 (37.91) 1.1141 .530
0.083 200 211.36 (33.20) 1.0568 .801 0.070 200 217.90 (56.10) 1.0895 .590
0.068 300 313.84 (38.40) 1.0461 .859 0.057 300 325.51 (67.35) 1.0850 .650
0.059 400 419.07 (39.83) 1.0477 .852 0.049 400 432.80 (75.80) 1.0820 .674
0.053 500 518.10 (46.63) 1.0362 .883 0.044 500 537.25 (78.29) 1.0745 .750

θ = 0.9
0.072 100 133.05 (64.05) 1.3305 .529
0.051 200 233.29 (102.83) 1.1665 .374
0.041 300 337.05 (132.64) 1.1235 .335
0.036 400 425.08 (158.88) 1.0627 .286
0.032 500 538.13 (181.26) 1.0763 .299

*s.d., standard deviation; c.p., coverage probability.
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Table 3. Simulation results of 90% confidence interval for AR(2) models.

d n0(d) T̄d (s.d.∗) T̄d/n0(d) c.p.∗

θ1 = 1.1, θ2 = −0.24, |π1| = 1.25, |π2| = 3.33
0.286 100 92.45 (5.85) 0.9245 .662
0.202 200 190.15 (8.00) 0.9508 .912
0.165 300 288.42 (9.10) 0.9614 .854
0.143 400 387.02 (11.33) 0.9676 .888
0.128 500 486.87 (12.94) 0.9737 .901

θ = 0.6, θ2 = −0.4, |π1| = |π2| = 1.58
0.235 100 101.52 (7.62) 1.0152 .776
0.166 200 201.36 (11.50) 1.0068 .906
0.136 300 302.10 (14.93) 1.0070 .898
0.118 400 402.12 (17.97) 1.0053 .888
0.105 500 502.06 (20.70) 1.0041 .891

θ1 = 0.2, θ2 = −0.35, |π1| = |π2| = 1.69
0.215 100 101.17 (8.01) 1.0117 .725
0.152 200 201.81 (12.61) 1.0091 .905
0.124 300 302.68 (15.59) 1.0089 .903
0.108 400 401.32 (18.47) 1.0033 .896
0.096 500 502.60 (19.65) 1.0052 .907

θ1 = 0.2, θ2 = 0.35, |π1| = 1.43, |π2| = 2.00
0.230 100 101.68 (11.21) 1.0168 .749
0.163 200 202.61 (16.64) 1.0130 .909
0.133 300 302.25 (21.18) 1.0075 .894
0.115 400 402.05 (25.00) 1.0051 .897
0.103 500 503.00 (26.95) 1.0060 .903

θ1 = 0.05, θ2 = 0.35, |π1| = 1.62, |π2| = 1.76
0.209 100 107.61 (9.06) 1.0761 .748
0.148 200 208.14 (15.17) 1.0407 .900
0.120 300 308.85 (19.53) 1.0295 .893
0.104 400 407.45 (24.70) 1.0186 .897
0.093 500 508.01 (27.89) 1.0160 .909

θ1 = 1.5, θ2 = −0.75, |π1| = |π2| = 1.15
0.193 100 151.41 (7.62) 1.5141 .045
0.137 200 241.99 (11.49) 1.2099 .611
0.112 300 331.24 (28.77) 1.1041 .751
0.097 400 441.86 (34.84) 1.1047 .707
0.087 500 549.12 (34.86) 1.0982 .714

*s.d., standard deviation; c.p., coverage probability.
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