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Chapter 9
Impossibility Theorems without Collective

Rationality∗

1 Introduction

Arrow’s general impossibility theorem [2] demonstrated the incompatibility of five con-
ditions on collective choice rules: unrestricted domain, nondictatorship, the Pareto con-
dition, independence of irrelevant alternatives , and transitive rationality of social choice
function. The last condition requires the existence of a social preference ordering such
that, given a set of alternatives, the chosen elements are those which are best with re-
spect to that ordering. Since the publication of Arrow’s theorem, an extensive body
of literature has appeared seeking to circumvent the difficulty. This chapter focuses on
attempts to resolve the paradox by weakening the collective rationality requirement.

For our purpose, it is convenient to decompose Arrow’s collective rationality require-
ment into two parts:

(a) Rationality. There exists a social preference relation R such that the elements
chosen out of a set of available alternatives S are those which are best in S with respect
to R. (R will be referred to as a rationalization.)

(b) Transitivity and completeness of the rationalization.
The sensitivity of Arrow’s result to the specification of the degree of rationality was

first noticed by Sen [22]. He continued to impose rationality but relaxed the second com-
ponent to require only completeness and quasi-transitivity (that is, transitivity of strict
preference), and showed that this weakened collective rationality requirement is compat-
ible with the remainder of Arrow’s conditions. Gibbard [10] subsequently proved that
any society whose collective choice rule meets Sen’s conditions contains an oligarchy , a

∗First published in Journal of Economic Theory, Vol.13, 1976, pp.361-379. Joint paper with D. H.
Blair, G. Bordes and J. S. Kelly. Reprinted in Arrow, K. J. and G. Debreu, eds., The Foundations of
20th Century Economics, Vol.3, Landmark Papers in General Equilibrium Theory, Social Choice and
Welfare, Cheltenham, Glos: Edward Elgar, 2001, pp.660-678. This paper represents a consolidation of
overlapping work done independently by the four authors [3, 5, 13, 26]. The authors are indebted to
the referees of the Journal of Economic Theory, the Review of Economic Studies, and Econometrica
for seeing the possibility of such a consolidation. Thanks are also due to Donald J. Brown, John A.
Ferejohn, Robert P. Parks, and Amartya K. Sen.
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class of individuals who are jointly decisive for exclusion of an alternative from the social
choice out of a two-element set and each of whose members is individually decisive for
inclusion of an element in the choice from such a set. Any individual who by strictly
preferring x to y can ensure that y is not socially preferred to x is called a weak dictator ;
every member of an oligarchy is clearly a weak dictator. Mas-Colell and Sonnenschein
[14] provided the first published proof of Gibbard’s theorem and proved an alternative
impossibility result: even if weak dictators are to be countenanced, their multiplicity
causes quasi-transitive rational (and otherwise Arrovian) collective choice rules to vio-
late a decisiveness condition they call positive responsiveness . Thus, demanding merely
quasi-transitive rationality of social choice provides no satisfactory resolution of Arrow’s
antidemocratic result. Even the smallest nondictatorial oligarchy (of two) fails a require-
ment of responsiveness (which is admittedly quite strong) when there are more than
two voters; enlarging and “democratizing” the oligarchy aggregates the heterogeneity of
individual preferences into widespread social indifference rather than intransitivity.

Further weakening of the consistency requirement imposed by Arrow’s collective ra-
tionality (while continuing to insist on the existence of a rationalization) is entailed by
requiring acyclicity (nonexistence of a strict preference cycle) instead of quasi-transitivity
of the social preference relation. The importance of this substitution comes from the ob-
servation that acyclicity is necessary and sufficient to guarantee that society is able to
make a nonempty rational choice from any finite subset of the set of alternatives. In the
case of individuals with acyclic preferences choosing over an infinite set of alternatives,
Brown [7] has shown that the only acyclic collective choice rules which satisfy the re-
mainder of Arrow’s conditions and are not oligarchic are those of what he calls collegial
polities . Under such a procedure, there exists a quasi-oligarchy , a subset of individuals
whose unanimous assent is a necessary condition for the exclusion of an alternative from
the social choice out of a two-element set. In contrast with the Gibbardian oligarchy,
consensus within the quasi-oligarchy, though necessary, is not sufficient for exclusion. For
this class of decision rules, at least one individual outside the quasi-oligarchy must also
prefer x to y to ensure a similar social preference. Thus, weakening Arrow’s transitive
rationality to require only acyclic rationality is a step in the democratic direction. The
complete asymmetry between the power of individuals within and outside the oligarchy is
diluted when quasi-transitivity is abandoned. Some non-quasi-oligarchs do have power:
they are pivotal to the success of some winning coalitions. Nevertheless the tradeoffs
remain between heterogeneity of preferences, decisiveness, and inequalities in the distri-
bution of power, as is shown by another Mas-Colell-Sonnenschein theorem which asserts
that no acyclic collective choice rules exist satisfying both their no-weak-dictators and
positive responsiveness conditions along with the remainder of Arrow’s conditions. This
proposition imposes no restrictions on the size of the alternatives set. In the case of
individuals with acyclic preferences choosing over a finite set, Brown [6] has obtained a
precise characterization of acyclic Arrovian collective choice rules which indicates clearly
how they violate the positive responsiveness requirement. Collegial polities are of course
acyclic even on a finite set, and nontrivial ones are obviously unresponsive to changes
in the preferences of some voters. The only anonymous acyclic procedures in the finite
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case, as Brown shows, are rules satisfying the following condition: if M is the number of
alternatives, every M -tuple of decisive coalitions of individuals must have nonempty inter-
section. This class of procedures includes simple special-majority rules (e.g., 2

3
majority)

and representative systems with a special-majority rule at each stage. For alternative
sets which are large relative to the size of the set of individuals, these procedures are
close to the unanimity rule.

Given all these results involving the weakening of Arrow’s transitivity requirement, it
is not surprising to find attacks focusing directly on rationality itself. Both Schwartz [21]
and Plott [16; 17; 18] have criticized the demand for the existence of rationalizations.
Plott [18] argues that a major reason for Arrow’s insistence on transitive rationality was
that it ensured that the social choice would be invariant under arbitrary manipulations
of the agenda, that is, the order and method by which alternatives are compared and
inferior ones discarded (see Arrow [2, p.120]). He proposes a consistency requirement for
choice functions which he calls path independence:

The alternatives are “split up” into smaller sets, a choice is made over
each of these sets, the chosen elements are collected, and then a choice is
made from them. Path independence, in this case, would mean that the final
result would be independent of the way the alternatives were initially divided
up for consideration (Plott [17, pp.1079-1080]).1

A fairly natural question now arises: What happens to impossibility theorems when path
independence is substituted for transitive rationality and the remaining Arrovian con-
ditions prevail? Plott [17, 18] observes, citing Sen [22] as a source, that the collective
choice rule which chooses the Pareto optimal subsets from available alternatives sets
serves as a counterexample to a proposed impossibility result. Unfortunately this collec-
tive choice rule runs afoul of Gibberd’s theorem; it is also too undiscriminating in the
face of heterogeneous individual preferences. It is important to notice that there exist
path-independent choice functions which have no rationalization. Plott’s position on im-
possibility results with path independence but without rationality is ambiguous. He has
said that “some of the standard constructions in welfare economics such as social welfare
functions and social preference relations unduly restrict the set of admissible policies and
consequently induce impossibility results” (Plott [16, p.182]) and that, with the relax-
ation of rationality, “the immediate impossibility result discovered by Arrow is avoided”
(Plott [17, p.1075]). He has been careful, however, to observe that “the lines which
separate rationality properties, which induce immediate impossibility results, from path
independence properties are very thinly drawn” [17, p.1075]. Blair [4] and Parks [15] have
exhibited examples of collective choice rules which can result in path-independent but
not quasi-transitive choices; both, however, suffer from the defect that they can generate
choice functions which are not very selective.

1For procedures aggregating preferences over many alternatives, which must of necessity be multistage
processes due to computational costs, path independence is a desirable property for two reasons. First,
it rules out certain forms of institutional arbitrariness, such as bias in favor of the status quo. Second,
it precludes strategic behavior at the agenda-determination stage.
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We prove in this paper several impossibility theorems in which we do not require
social choices to have a rationalization. One of our results shows the incompatibility
of non-weak-dictatorship, the Pareto condition, independence of irrelevant alternatives,
and path independence. Thus the replacement of Arrow’s collective rationality with
Plott’s path independence does not help us to escape from the Arrovian dilemma. Still
weaker consistency properties for social choice functions than path independence will be
proposed. They too, however, fail to provide us with a means of avoiding impossibility
results. As Arrow has written, “the paradox of social choice cannot be so easily exorcised”
[2, p.109].

2 The Structures of Choice Functions

Before presenting our impossibility theorems, we will clarify in this section the relation-
ships between, on one hand, the rationality conditions used in the existing impossibility
theorems and, on the other, path independence and some weaker conditions.

Let X denote the set of (mutually exclusive) alternatives. K stands for a family of
nonempty subsets of X. Each element S ∈ K is an admissible agenda; it contains the
currently feasible alternatives in a given choice situation. We assume throughout this
chapter that K contains all nonempty finite elements of P(X), the power set of X. A
choice function C on K is a function which maps each S ∈ K into a nonempty subset
C(S) of S; note that C(S) is not required to be a one-element set: Five properties of
choice functions will be of interest here:

Path independence (PI). C(S1 ∪ S2) = C(C(S1) ∪ C(S2)) for all S1, S2 ∈ K.

Chernoff condition (C). S1 ⊂ S2 ⇒ C(S2) ∩ S1 ⊂ C(S1) for all S1, S2 ∈ K. That is,
every element chosen out of a set must also be chosen in every subset of the set containing
the element.2

Property β. [S1 ⊂ S2 & C(S1) ∩ C(S2) 6= ∅] ⇒ C(S1) ⊂ C(S2) for all S1, S2 ∈ K.
That is, if some chosen element from a set is chosen from a superset of that set, then
every such element is chosen from the superset. (See Sen [24].)

Superset property (S). S1 ⊂ S2 ⇒ not [C(S2) ( C(S1)]. That is, the choice out of
the superset of a set is not strictly contained in the choice out of the set.

Generalized Condorcet property (GC). (x ∈ S & x ∈ C({x, y}) for all y ∈ S) ⇒ x ∈
C(S) for all S ∈ K. That is, if no element in a set beats a given element x in a binary
choice, then x must be among the elements chosen from the set.3

2This condition, first introduced by Chernoff [8], has appeared in the literature under a variety of
names including, unhappily, “independence of irrelevant alternatives.” It is discussed extensively by
Arrow in [1].

3The Condorcet condition in its usual form is stated in terms of pairwise comparisons by simple
majority rule. Our condition is a weaker version of Sen’s property γ, discussed in [24].
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A preference relation R is a binary relation on X having the interpretation that xRy iff
x is at least as good as y from the point of view of the person or group in question. In the
usual way we define from R the subrelations P of strict preference and I of indifference.
R is complete iff xRy of yRx, transitive iff xRy & yRz ⇒ xRz, quasi-transitive iff P is
transitive, and acyclic iff (x1Px2P . . . PxtPx1) for no finite subset {x1, . . . , xt} of X. A
transitive and complete relation will be called a transitive ordering.

Choice functions induce preference relations in two ways. If there exists a preference
relation R satisfying C(S) = {x ∈ S : xRy for all y ∈ S} for all S ∈ K, the choice
function C will be called rational (R); in that event R is a rationalization of C. A choice
function is transitive rational (TR), quasi-transitive rational (QTR), or acyclic rational
(AR) if it has a rationalization with the requisite property.

Alternatively, a preference relation may be derived from choice functions restricted to
two-element agenda sets. Even if C has no rationalization, we can always define, following
Herzberger [12], the base relation R∗ as follows: xR∗y iff x ∈ C({x, y}) for all {x, y} ∈ K.
Strict preference P ∗ may be defined in the obvious way. A choice function will then be
said to satisfy base quasi-transitivity (BQT) iff R∗ is quasi-transitive, base acyclicity (BA)
iff R∗ is acyclic, and base triple acyclicity (BTA) iff xP ∗y & yP ∗z ⇒ xR∗z.

We turn now to comparing these consistency conditions by decomposing several of
them into more basic parts. Sen [24] has proven that a choice function has a transitive
rationalization iff it satisfies both property β and the Chernoff condition. Plott [17], in
turn, has shown that quasi-transitive rationality is equivalent to the conjunction of path
independence and the generalized Condorcet property. The relationship between these
results becomes more apparent when we further decompose path independence.

Theorem 1. A choice function is path independent if and only if it satisfies the
Chernoff condition and the superset property.

Proof. First we show that path independence implies the Chernoff condition. Let
S1 ⊂ S2, and let x ∈ S1∩C(S2). By path independence, C(S2) = C[C(S2\S1)∪ C(S1)] ⊂
C(S2 \ S1) ∪ C(S1). Since x ∈ S1, x /∈ S2 \ S1, so x /∈ C(S2 \ S1). Hence x ∈ C(S1);
therefore S1 ∩ C(S2) ⊂ C(S1).

Next we show that path independence implies the superset property. Suppose, con-
trary to that condition, that S1 ⊂ S2 and C(S2) ( C(S1). By path independence,
C(S2) = C[C(S2) ∪ C(S1)] = C[C(S1)]. By the first part of this proof, the Chernoff
condition holds, so that from C(S1) ⊂ S1 we can derive C(S1)∩C(S1) ⊂ C[C(S1)]; thus
C[C(S1)] = C(S1). This yields C(S1) = C(S2), a contradiction.

Finally, we obtain path independence from the superset property and the Chernoff
condition. Suppose x ∈ C(S1 ∪S2). If x ∈ S1, the Chernoff condition implies x ∈ C(S1);
if x ∈ S2, then x ∈ C(S2). Hence x ∈ C(S1) ∪ C(S2) ⊂ S1 ∪ S2. By another application
of the Chernoff condition, x ∈ C[C(S1) ∪ C(S2)]. Thus C(S1 ∪ S2) ⊂ C[C(S1) ∪ C(S2)].
The inclusion cannot be strict, however, because of the superset property and the fact
that C(S1 ∪ S2) ⊂ C[C(S1) ∪ C(S2)]. Therefore, C(S1 ∪ S2) = C[C(S1) ∪ C(S2)].

What we now know is that quasi-transitive rationality is equivalent to the conjunction
of the Chernoff condition, the superset property, and the generalized Condorcet prop-
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erty, and that if the generalized Condorcet property is no longer required we have path
independence. Suppose we retain the Chernoff condition and the generalized Condorcet
property but do not require that the superset property hold. Theorem 2 demonstrates
that what remains is acyclicity.

Theorem 2. If a choice function C on K satisfies the Chernoff condition and the
generalized Condorcet property and if K contains all finite nonempty subsets of X, it
has a unique, complete, reflexive, acyclic rationalization. If a choice function is induced
by an acyclic relation, it satisfies the Chernoff condition and the generalized Condorcet
property.

Proof. Beginning with the first proposition, we assume C satisfies the conditions
stated. Each two-element subset of X belongs to K, so the only possible rationalization
is the base relation R∗:

xR∗y iff x ∈ C({x, y}).
If x ∈ C(S), then, by the Chernoff condition, x ∈ C({x, y}) for each y ∈ S. On the
other hand, if x ∈ C({x, y}) for all y ∈ S, then x ∈ C(S) by the generalized Condorcet
property. Thus,

C(S) = {x ∈ S : x ∈ C({x, y}) for all y ∈ S}
= {x ∈ S : xR∗y for all y ∈ S},

i.e., R∗ is in fact a rationalization of C. Completeness and reflexivity of R∗ are ob-
vious: it remains to show that R∗ is acyclic. Suppose that x1P

∗x2P
∗ . . . P ∗xn, i.e.,

xi /∈ C({xi−1, xi}) for i = 2, . . . , n. By the Chernoff condition, xi /∈ C({x1, x2, . . . , xn})
for i = 2, . . . , n. By our assumption about the content of K, C({x1, x2, . . . , xn}) 6= ∅,
so C({x1, x2, . . . , xn}) = {x1}. By another application of the Chernoff condition, x1 ∈
C({x1, xn}), that is, not xnP ∗x1, as was to be shown.

Turning now to the second assertion, for each S ∈ K,

C(S) = {x ∈ S : xRy for all y ∈ S} = {x ∈ S : not (∃y)(y ∈ S & yPx)},

where R is acyclic. Suppose x ∈ C({x, y}) for all y ∈ S. Then xRy for all y ∈ S, that
is, x ∈ C(S); the generalized Condorcet property therefore holds. Suppose x ∈ C(S2)
and x ∈ S1 ⊂ S2. Now x ∈ C(S2) implies xRy for all y ∈ S2, which implies xRy for all
y ∈ S1. Hence x ∈ C(S1), and the Chernoff condition holds.

Theorems 1 and 2, coupled with Plott’s theorem, imply that the only path-independent
choice functions which are acyclic rational are those which are quasi-transitive rational
as well. We have earlier remarked that path-independent choice functions exist which
are not rational (see Plott [17]). It should now be clear that there exist rational choice
functions which violate path independence; indeed, the choice function induced by any
acyclic but not quasi-transitive preference relation falls in this category.

The following example shows that the Chernoff condition implies neither path inde-
pendence nor the existence of a rationalization:
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Example. Let X = {x, y, z} and K = P(X) \ {∅}. The choice function defined by
C(X) = {x} and C(S) = S for all S ( X is easily shown to satisfy the Chernoff condition.
It is not path-independent, however, since C({x, y, z}) = {x} ( {x, y} = C({x, y}),
which contradicts the superset property. If C has any rationalization it must be universal
indifference, given C(S) = S for all two-element S, but this contradicts C(X) = {x}.

Finally, we relate path independence and the Chernoff condition to the properties of
the base relation.

Lemma 1. Path independence implies base quasi-transitivity. The Chernoff condition
implies base acyclicity.

Proof. Suppose that C is path-independent and that xP ∗yP ∗z for some x, y, z ∈ X.
By path independence, {x} = C({x, y}) = C[C({x}) ∪ C({y, z})] = C({x, y, z}) =
C[C({x, y}) ∪ C({z})] = C({x, z}). Hence xP ∗z, so R∗ is quasi-transitive.

The second proposition is established by an argument already given in the first part
of the proof of Theorem 2.

Counterexamples to the converse of Lemma 1’s assertions are left for the reader to
construct.

We conclude this section with an implication diagram which summarizes the results
presented here and other relationships which follow easily from the definitions. The
properties in parentheses are jointly equivalent to the conditions above them. Note that
the equivalence of rationality and acyclic rationality is dependent on our assumption that
K includes all finite nonempty subsets of X.

TR QTR AR R

CPI

BQT BA BTA

(C, β) (C, S, GC) (C, GC)

(C, S)

3 Impossibility Theorems

Suppose that there are n individuals and let N = {1, 2, . . . , n}; it is assumed that 2 ≤ n <
∞. X stands for the set of social alternatives, now taken to have at least three elements.
The problem at hand is to characterize the institutionally and ethically “acceptable”
collective choice rules; such a rule F is a function which maps each profile, or n-tuple
of individual transitive preference orderings of X, into the set of choice functions on K.
(Note that what is called here a collective choice rule is analogous to Arrow’s [2] social
welfare function, and that choice functions play in this analysis the same role as Arrow’s
social preference ordering .) The domain of F is the set of all logically possible profiles.
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Formally, given a profile k, society’s choice function C is given by C = F (k). However,
the function F will be fixed throughout the proof of each of the subsequent theorems.
We will therefore frequently not refer explicitly to F , but rather will simply write Ck(S)
for the choice out of agenda set S under profile k, given the fixed collective choice rule.
When the profile is invariant, we will suppress the superscript as well and merely write
C(S).

All of the rationality and consistency requirements studied in Section 2 are properties
of choice functions, that is, of elements of the range of collective choice rules. Each of
these conditions will also be attributed to a collective choice rule F in the event that,
for every profile, the choice function determined by F satisfies the given condition. For
example, we will call a collective choice rule path-independent if the image of every profile
under the rule is a path-independent choice function.

A further set of definitions is necessary before proceeding to the results of this section.
A set of individuals J ⊂ N is decisive for x against y (resp. weakly decisive for x

against y) iff xPiy for all i ∈ J and jPix for all i /∈ J implies {x} = C({x, y}) (resp. x ∈
C({x, y})).

If V is decisive for some a against some b, and W being decisive for some x against
some y implies that the number of individuals in W is at least as great as the number of
individuals in V , then V is a smallest decisive set .

Individual i is a dictator ( resp. weak dictator) iff for all x, y ∈ X, xPiy implies {x} =
C({x, y}) (resp. x ∈ C({x, y})).

A collective choice rule is said to satisfy:

The Pareto condition iff for any profile k such that xPiy for all i ∈ N , we have
{x} = Ck({x, y}).

Nondictatorship iff there exists no dictator.

Non-weak-dictatorship iff there exists no weak dictator.

Positive responsiveness iff k is a profile resulting in x ∈ Ck({x, y}) and l is another
profile with Rk

j = Rl
j for all j 6= i and either (yP k

i x & xI l
iy) or (yIk

i x & xP l
i y), implies

{x} = C l({x, y}), where i ∈ N is any specified individual.

Independence of irrelevant alternatives iff for any two profiles j = (R1, . . . , Rn) and
k = (R′

1, . . . , R
′
n) such that (xRiy ⇔ xR′

iy & yRix ⇔ yR′
ix) for all i ∈ N , we have

Cj({x, y}) = Ck({x, y}).
Notice that our independence condition restricts its attention to choices from two-

element sets, in contrast with Arrow’s independence axiom. Although the two conditions
are equivalent for rational collective choice rules, our axiom is strictly weaker if rationality
is not imposed.

Profiles will be written horizontally with more preferred alternatives to the left; in-
difference will be indicated by parentheses. For example, the expression

V : x, (y, z)
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means that every individual in V prefers x to both y and z, between which indifference
prevails.

We now proceed to establish an impossibility theorem using only path independence
rather than Arrow’s transitive rationality. The theorem is otherwise Arrovian except for
a slight strengthening of the nondictatorship condition.

Theorem 3. If there are at least three voters, there is no collective choice rule
satisfying all of:

(1) path independence,
(2) the Pareto condition,
(3) independence of irrelevant alternatives, and
(4) non-weak-dictatorship.

In view of Lemma 1, we can establish this proposition by proving the following stronger
result, which utilizes the weaker condition of base quasi-transitivity. An alternative proof
of Theorem 4 is given by Fishburn [9, Theorem 16.2].

Theorem 4. If there are at least three voters, there is no collective choice rule
satisfying all of:

(1) base quasi-transitivitiy,
(2) the Pareto condition,
(3) independence of irrelevant alternatives, and
(4) non-weak-dictatorship.

This proposition follows immediately from the three lemmas below.

Lemma 2. If a collective choice rule satisfies the Pareto condition, independence of
irrelevant alternatives, and base quasi-transitivity, and if i is decisive for some x, y ∈ X,
then i is a dictator; that is,

(xPiy & yPjx for all j 6= i ⇒ {x} = C({x, y}))
⇒ (For all s, t ∈ X : sPit ⇒ {s} = C({s, t})).

Proof. We first show

(xPiy & yPjx for all j 6= i ⇒ {x} = C({x, y}))
⇒ (For all s ∈ X : sPiy ⇒ {s} = C({s, y})). (1)

Suppose not. Then there exists a profile such that xPiy and yPjx for all j 6= i implies
{x} = C({x, y}), sPiy, and {s} 6= C({s, y}):

i : s, x, y,
N \ {i}: (some n− 1-tuple of orderings of y and s), x.
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By assumption, {x} = C({x, y}). By the Pareto condition {s} = C({s, x}).

Base quasi-transitivity then implies that, under this profile {s} = C({s, y}). By inde-
pendence, {s} = C({s, y}) under every profile in which sPiy, since no specification has
been made of other voters’ preferences between these alternatives. This contradiction
establishes (1). Next we show

(For all s ∈ X : sPiy & yPjs for all j 6= i ⇒ {s} = C({s, y}))
⇒ (For all s, t ∈ X : sPit ⇒ {s} = C({s, t})). (2)

The antecedent of (2) is implied by (1). Suppose (2) is false. Then there exists a profile
such that sPiy and yPjs for all j 6= i ⇒ {s} = C({s, y}), sPit, and {s} 6= C({s, t}):

i : s, y, t,
N \ {i}: y, (some n− 1-tuple of orderings of s and t).

By assumption, {s} = C({s, y}) and by the Pareto condition, {y} = C({y, t}). Base
quasi-transitivity shows that under this profile {s} = C({s, t}). By independence, the
social choice is the same for all profiles in which sPit holds, contradicting our assumption
and establishing (2).

Lemma 3. If a collective choice rule satisfies independence of irrelevant alternatives,
the Pareto condition, and base quasi-transitivity, and if i is weakly decisive for some
x, y ∈ X, then i is a weak dictator; that is,

(xPiy & yPjx for all j 6= i ⇒ x ∈ C({x, y}))
⇒ (For all s, t ∈ X : sPit ⇒ s ∈ C({s, t})).

The proof of this lemma is virtually identical to that of Lemma 2 and is omitted.

Lemma 4. if V is a smallest decisive set with respect to a and b under a collective
choice rule satisfying base quasi-transitivity, the Pareto condition, nondictatorship, and
independence of irrelevant alternatives, then

V contains at least two individuals , (3)
and every i ∈ V is a weak dictator . (4)

Proof. Assertion (3) is obvious from Lemma 2 and nondictatorship. To establish (4),
we must show:

If i ∈ V, xPiy ⇒ x ∈ C({x, y}) for some x, y ∈ X.

Suppose not. Then for some a, z ∈ X, there exists a profile of the form:

i : a, z,
N \ {i}: (some n− 1-tuple of orderings of a and z).
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such that {z} = C({a, z}). Let W ⊂ V and V \W = {i}. Consider the following further
specification of the previous profile:

i : a, b, z,
W : (same individual orderings as before between a and z), b,
N \ V : b, (same individual orderings as before between a and z).

We know C({a, z}) = {z} and, because of V ’s decisiveness for a over b, C({a, b}) = {a}.
By base quasi-transitivity, {z} = C({b, z}) under the profile in question. But this implies
that W is decisive for z against b, which contradicts the minimality of V . Thus, if i ∈ V ,
i is weakly decisive for some x against y, x, y ∈ X. By Lemma 3, such an individual is a
weak dictator, establishing (4).

Proof of Theorem 4. Every dictator is a weak dictator, so prohibiting weak dicta-
tors rules out dictators too. If a collective choice rule satisfies base quasi-transitivity,
independence of irrelevant alternatives, the Pareto condition, and has no weak dictators
(and thus no dictator either), then Lemma 4 yields the conclusion that there must exist
a weak dictator, which contradiction proves the theorem.

Mas-Colell and Sonnenschein’s [14] result on the inconsistency of quasi-transitivity
and positive responsiveness in the presence of the Arrovian conditions carries over in a
straightforward manner to the case of irrational path independence, and thence to base
quasi-transitivity:

Theorem 5. If there are at least three voters, there is no collective choice rule
satisfying all of :

(1) base quasi-transitivity,
(2) the Pareto condtion,
(3) nondictatorship,
(4) independence of irrelevant alternatives, and
(5) positive responsiveness.

Proof. By Lemma 4, there exist at least two weak dictators; call them 1,2. Suppose
under some profile xP1y and yP2x for some x, y ∈ X; by weak dictatorship, {x, y} =
C({x, y}), regardless of the preferences of others voters, of whom there exists at least
one. This violates positive responsiveness.

In view of the impossibility theorems discussed in the Introduction and the new results
just presented, one might be tempted to retreat and demand the imposition only of the
Chernoff condition which, as we have seen, is strictly weaker than both acyclicity and
path independence. This condition is an appealing one to impose on collective choice
rules. It is clearly desirable in piecemeal choice mechanisms where choices are made from
unions of choices over subsets. If an alternative fails to be chosen in some subset, it need
not be considered again at a later stage, for the contra-positive of the Chernoff condition
ensures that the alternative will not be among the final choices. Arrow’s justification
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in [2, pp.26-27] for his independence axiom is obviously instead an argument for this
condition. See also Sen [23, p.17]. Nevertheless, as the following theorems demonstrate,
the Chernoff condition standing alone as a rationality condition must also be rejected,
at least if the Arrovian conditions are found compelling.4

Theorem 6. If there are at least four voters, there is no collective choice rule satis-
fying all of:

(1) the Chernoff condition,
(2) the Pareto condition,
(3) non-weak-dictatorship,
(4) independence of irrelevant alternatives, and
(5) positive responsiveness.

As in the case of Theorem 3, we will establish this result by proving an even stronger
proposition. By Lemma 1, the Chernoff condition implies base acyclicity, and it is obvious
from the definitions that base acyclicity implies base triple acyclicity.

Theorem 7. If there are at least four voters, there is no collective choice rule satis-
fying all of:

(1) base triple acyclicity,
(2) the Pareto condtion,
(3) non-weak-dictatorship,
(4) independence of irrelevant alternatives, and
(5) positive responsiveness.

Proof. We will proceed in two steps. First, assuming all of the conditions in the
theorem except non-weak-dictatorship, we will show that there exists a voter who is
weakly decisive for some pair of alternatives. We will then show that individual is a weak
dictator, contradicting the third condition in the theorem.

Step 1. We must show that if a collective choice rule satisfies base triple acyclicity, the
Pareto condition, independence, and positive responsiveness, there exists an individual
i ∈ N and alternatives x, y ∈ X such that:

(xPiy & yPjx for all j 6= i) ⇒ x ∈ C({x, y}). (5)

4The existence of collective choice rules which satisfy the Chernoff condition but are neither path-
independent nor rational is guaranteed by the following proposition, which is easily verified: the rule
which makes the collective choice equal to the union of individuals’ choices from the feasible set satisfies
the Chernoff condition, if the individuals’ preferences satisfy that condition as well. The group’s choice
function is precisely the one given in the example in Section 2 if the group has two members with the
following acyclic preferences: xP1y, yP1z, xI1z, xP2z, zP2y, xI2y, and the collective choice rule is the
union-rule just described.
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Suppose (5) is false. Then for all x, y ∈ X and all i ∈ N , if a profile a is such that under
it xPiy and yPjx for all j ∈ N \ {i}, then Ca({x, y}) = {y}. Let V be a smallest decisive
set; V is decisive for some x against y. Our assumption implies that V contains at least
two individuals, say 1 and 2. Partition V as V = {1, 2} ∪ V ∗. Consider profile b:

1: x, y, z
{2} ∪ V ∗ : z, x, y
N \ V : y, z, x.

By the definition of V , {x} = Cb({x, y}), and by assumption, Cb({x, z}) = {z}. By base
triple acyclicity, z ∈ Cb({y, z}). Now consider profile c:

1: x, y
2: y, x
V ∗ : x, y
N \ V : y, x.

Since V is a smallest decisive set, y ∈ Cc({x, y}). Next consider profile d:

1: (x, y, z)
2: z, y, x
V ∗ : x, z, y
N \ V : y, x, z.

Comparing profiles, c and d, and noting the conclusion drawn from the former, positive
responsiveness and independence require that {y} = Cd({x, y}). Comparing profiles b
and d, the same two axioms require that {z} = Cd({y, z}). Base triple acyclicity then
yields z ∈ Cd({x, z}). Next examine profile e:

1: z, x
2: z, x
V ∗ : x, z
N \ V : x, z.

Comparing profiles d and e, positive responsiveness and independence require that {z} =
Ce({x, z}). This conclusion and independence imply that {1, 2} is decisive for z against
x, so that V = {1, 2}. Finally examine profile f :

1: x, y, z
2: z, x, y
N \ V : y, z, x.

Since V is decisive for x against y, {x} = Cf ({x, y}), while our assumption yields {y} =
Cf ({y, z}). By base triple acyclicity, x ∈ Cf ({x, z}), in contradiction to our assumption.
Thus we have shown that voter 1 is weakly decisive for x against z.
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Step 2. In this step we show that if voter 1 is weakly decisive for x against y, then
he or she is a weak dictator, if there are at least four voters. In the presence of positive
responsiveness, this can be established by proving that for all s, t ∈ X,

(sP1t & tPjs for all j ∈ N \ {1}) ⇒ s ∈ C({s, t}). (6)

We will prove only that for all t ∈ X,

(xP1t & tPjx for all j ∈ N \ {1}) ⇒ s ∈ C({x, t}). (7)

The steps from (7) to (6) are sufficiently similar to the ones we use in establishing (7)
that they may safely be skipped. To prove (7), we first examine profile a:

1: x, y, t
2: (x, y), t
3: y, t, x
4: y, t, x
N \ {1, 2, 3, 4} : y, t, x.

By Step 1 and positive responsiveness, Ca({x, y}) = {x}. By the Pareto condition,
Ca({y, t}) = {y}. By base triple acyclicity, x ∈ Ca({x, t}). Now consider profile b:

1: y, x, t
2: y, x, t
3: t, y, x
4: y, (x, t)
N \ {1, 2, 3, 4} : t, y, x.

Comparing profiles a and b, positive responsiveness and independence require that Cb({x,
t}) = {x}. By the Pareto condition, Cb({x, y}) = {y}. Base triple acyclicity then implies
y ∈ Cb({y, t}). Next examine profile c:

1: x, y, t
2: y, t, x
3: (x, y, t)
4: y, t, x
N \ {1, 2, 3, 4} : t, y, x.

By Step 1 and positive responsiveness, Cc({x, y}) = {x}. Comparing profiles b and
c, positive responsiveness and independence require that Cc({y, t}) = {y}. Another
application of base triple acyclicity yields x ∈ Cc({x, t}). Next consider profile d:

1: y, x, t
2: t, y, x
3: y, x, t
4: t, y, x

14



N \ {1, 2, 3, 4} : t, y, x.

Comparing profiles c and d, positive responsiveness and independence require Cd({x, t}) =
{x}; by the Pareto condition {y} = Cd({x, y}). Base triple acyclicity then yields
y ∈ Cd({y, t}). Finally consider profile e:

1: x, y, t
2: t, (x, y)
3: y, t, x
4: (y, t), x
N \ {1, 2, 3, 4} : t, y, x.

Comparing profiles d and e, positive responsiveness and independence again require {y} =
Ce({y, t}). By Step 1 and positive responsiveness, Ce({x, y}) = {x}. A final application
of base triple acyclicity yields x ∈ Ce({x, t}). In view of the independence axiom, this
proves (7).

4 Concluding Remarks

Arrow and subsequent writers have modeled the output of collective decision-making
institutions as binary social preference relations, both by analogy with consumers’ pref-
erences in demand theory and as a generalization of Condorcet’s proposal that any al-
ternative which received a majority of votes against every other candidate should be
chosen. Such a view, as the well-known series of impossibility theorems demonstrates,
is inconsistent with a set of several democratic requirements. In this chapter we have
shown that binary rationality per se is not the culprit in these theorems.

We have taken a more general view, and required only that the group makes a
nonempty choice from every finite feasible set of alternatives. Several weak conditions
imposed on the resultant choice of functions are each shown to contradict one or more
of the same democratic requirements, even if the choices have no binary rationalization.
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Chapter 10
Remarks on the Theory of Collective Choice∗

Ever since the so-called paradox of voting was generalized by Arrow [2] to every demo-
cratic method of collective decision-making, a vast literature has appeared (a) trying to
circumvent Arrow’s difficulty by weakening some of his conditions (Bordes [6]; Hansson
[12]; Plott [15]; Sen [20]); (b) proposing some other paradoxes in the theory of collective
choice (Batra and Pattanaik [3]; Hansson [11]; Schwarts [19]; Sen [21]) and (c) casting
doubts about the relevance of Arrow’s theorem to the theory of Paretian welfare eco-
nomics (Bergson [4]; Little [14], Samuelson [17; 18]). The purpose of this chapter is to
make some remarks on these recent developments in the theory of collective choice.

The first part of the chapter deals with the question of how much one needs to weaken
Arrow’s collective rationality condition in order to avoid his impossibility result. As is
well known, Arrow [2] imposed the collective rationality condition that the society can
arrange all conceivable alternatives in order of preference and that, if some available
set of alternatives is specified, the society must choose therefrom the best alternative(s)
with respect to that preference ordering. We will consider two conditions of consistent
choice which are weaker than that of Arrow. The first condition requires that, if an
alternative x is chosen over another alternative y in binary choice, y should never be
chosen from any set of alternatives that contains x; while the second condition requires
that, if x is chosen over y in binary choice, there exists no choice situation in which
y is chosen and x is available but rejected. (In the second case y can be chosen if
x is also chosen, while in the first case y cannot be chosen anyway.) There seems to
be a gulf that separates possibility from impossibility in between these two seemingly
similar consistency conditions. It will be shown that the first consistency requirement
is incompatible with essentially Arrovian conditions on the collective choice rule, while
the second consistency condition is compatible with the same conditions. Although the
difference between these consistency requirements is very subtle, the implication thereof
in the context of impossibility result is therefore dramatically different.

Lest we should be too satisfied, we must hasten to add that no collective choice rule
satisfying our second consistency requirement can be free from the paradox of a Paretian
liberal (Sen [21]; Batra and Pattanaik [3]).

∗First published in Economica, Vol.43, 1976, pp.381-390. Thanks are due to Professors A. K. Sen
and G. Bordes for their comments. They are, of course, not responsible for any remaining deficiencies
of this chapter. Thanks are also due to an anonymous referee and the editor of Economica.
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The Arrow-Sen theory is then contrasted with the Bergson-Samuelson one. In view
of doing this, it is convenient to remember that Arrow’s incompatible conditions on
collective choice rule can be classified into two categories. The first category consists of
statements that apply to any fixed profile of individual preference relations, while the
second category refers to the responsiveness of the collective choice to the variations in
profiles. (The first category embraces the condition of collective rationality and the Pareto
rule, while the second category consists of the independence of irrelevant alternatives
and non-dictatorship. See Sections I and II below for the definition of these conditions.)
Begson [4], Little [14] and Samuelson [17; 18] agreed with Arrow so far as his conditions
of the first category were concerned. It was only when Arrow went on to introduce
some conditions of the second category that Bergson, Little and Samuelson come to deny
the reasonableness and/or necessity thereof. Let us, therefore, fix a profile of individual
preference relations. What we call the Bergson-Samuelson social welfare ordering is an
ordering R such that, if a state x is Pareto-non-inferior (resp. Pareto-superior) to a state
y with respect to the given profile, then x is not less preferred (resp. preferred) to y in
terms of R. (Incidentally, the Bergson-Samuleson social welfare function is a numerical
function u such that u(x) ≥ u(y) if and only if xRy for all states x and y.) Now we raise
the problem of whether we can define such a social welfare ordering corresponding to a
given profile. The answer is in the affirmative if each and every individual preference
relation satisfies a strong consistency condition of transitivity. The main purpose in
this part is to strengthen this in that a social welfare ordering exists if and only if the
Paretian unanimity rule corresponding to the given profile satisfies what we call the axiom
of consistency . (Thus, even if intransitive individual preference is countenanced, we may
still have a well-defined social welfare ordering.) This will be done by proving a general
theorem on the extension of a binary relation.

What emerges as a result of our investigation is an ever sharper contrast between
the variable profile framework of the Arrow-Sen theory, on the one hand, and the fixed
profile framework of the Bergson-Little-Samuelson theory, on the other.

All the proofs are relegated into the final section which can be neglected by those
who are not interested in technical details.

1 Rationality and Revealed Preference

For the sake of logical clarity, we discuss in this section the concept of rationality and
that of revealed preference in abstraction from the problem of collective decision. The
heart of our argument is the implication diagram given at the end of this section.

Let X be the set of all alternatives that are mutually exclusive. We assume that X
contains at least three distinct elements. Also let K stand for the family of non-empty
subsets of X, containing all the pairs and all the triples taken from X (and possibly
more). A preference relation is a binary relation on X. Let R be a binary relation. By
xRy (or, equivalently, (x, y) ∈ R) we mean that x is at least as good as y. By xPy and
xIy we mean, respectively, (xRy and not yRx) and (xRy and yRx). An R is said to be
reflexive if (xRx for all x ∈ X), complete if (xRy and/or yRx for all x, y ∈ X). transitive
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if (xRy and yRz ⇒ xRz for all x, y, z ∈ X), and acyclic if (x1Px2 . . . xtPx1 for no finite
subset {x1, x2, . . . , xt} of X). A quasi-ordering is a reflexive and transitive relation and
an ordering is a complete quasi-ordering.

Given a preference relation R and an S ∈ K, we define:

(1) GR(S) = {x : x ∈ S and xRy for all y ∈ S}.

Clearly GR(S) is a subset of S such that x∗ ∈ GR(S) has the following property: x∗ is
at least as good as any alternative in S.

A choice functioin on K is a function C which assigns a non-empty subset C(S) of
S to each S ∈ K. (It is intended that S ∈ K represents a set of available alternatives
and C(S) represents the set of chosen elements from S.) We say that C is rational (R)
if there exists a preference relation R, to be called a rationalization of C, such that

(2) C(S) = GR(S) for all S ∈ K.

In other words, a choice function is rational if it can be construed as a result of preference
optimization. (It should be noted that the concept of rational choice in itself has noting
to do with the transitivity of rationalization.) We say, in particular, that C is regular-
rational (RR) if (a) C is rational and (b) a rationalization thereof is an ordering. Arrow
[1] has shown that C is (RR) if and only if, for all S1 and S2 in K such that S1 ⊂ S2 and
S1∩C(S2) 6= φ, S1∩C(S2) = C(S1) holds true. (In other words, it is required that if some
elements are chosen out of S2, and then the range of alternatives is narrowed to S1 but
still contains some previously chosen elements, no previously rejected element becomes
chosen and no previously chosen element becomes unchosen.) This Arrovian property (A)
is to be decomposed into what we call the Bordesian property (B) and the Chernovian
property (C). We say that C satisfies (B) (resp. (C)) if and only if, for all S1 and S2 in K
such that S1 ⊂ S2 and S1 ∩ C(S2) 6= φ, S1 ∩ C(S2) ⊃ C(S1) (resp. S1 ∩ C(S2) ⊂ C(S1)).
The property (B) requires that if some elements are chosen out of S2 and then the range
of alternatives is narrowed to S1 but still contains some previously chosen elements, no
previously unchosen element becomes chosen. The property (C) requires, on the other
hand, that if some elements of subset S1 of S2 are chosen from S2, then they should be
chosen from S1. The property (B) is due to Bordes [6], while the property (C) is named
after Chernoff [8], although in the present context it is better known as Sen’s condition
α (see Sen, [20; 22]).

An alternative formulation of the concept of rational choice goes as follows. Given a
preference relation R and an S ∈ K, we define:

MR(S) = {x : x ∈ S and not yPx for all y ∈ S}.

We say that a choice function C is M-rational if there exists a preference relation R, to
be called an M-rationalization, such that C(S) = MR(S) for all S ∈ K. In view of some
arguments by Herzberger [13] and Schwartz [19] in favour of the M -rationality concept,
it may be worth our while to investigate how M -rationality will fare in the context of the
impossibility results. In order to do so, let C be M -rational with an M -rationalization R.
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Let us define a binary relation R′ by {xR′y ⇔ (xRy or not yRx)} for all x and y in X.
It can easily be shown that MR(S) = GR′(S) for all S ∈ K. Therefore if C is M-rational,
it is rational . This being the case, the concept of M -rationality has no special role to
play in the impossibility exercises (see, however, Suzumura [24]).

So much for rational choice functions. Let us now introduce some axioms of revealed
preference. Our first axiom of revealed preference (FARP) and second axiom of revealed
preference (SARP) consider the binary choice of x over y : {x} = C({x, y}). In this
case, (FARP) requires that there should be no choice situation S ∈ K such that x ∈ S
and y ∈ C(S), while (SARP) requires that there should be no choice situation S ∈ K
such that x ∈ S \ C(S) and y ∈ C(S). What these two axioms essentially say is
that the choice pattern revealed in binary choice should never be contradicted in non-
binary choice. Our third revealed preference axiom, which we called in Blair et al . [5]
the base triple acyclicity (BTA), is concerned solely with binary choices. It requires
that if x is chosen over y in binary choice and y is chosen over z in binary choice, x
should never be rejected in the binary choice between x and z : {x} = C({x, y}) and
{y} = C({y, z}) ⇒ x ∈ C({x, z}) for all x, y, z ∈ X. Finally we introduce the weak
axiom of revealed preference (WARP), due originally to Samuelson [16], who introduced
it in the context of consumers’ behaviour. It says that, if {x ∈ C(S) and y ∈ S \ C(S)}
for some S ∈ K, then {x ∈ S ′ and y ∈ C(S ′)} for no S ′ ∈ K. Namely, if in some choice
situation x is chosen while y, though available, is rejected, then y should never be chosen
in the presence of x.

Essential for our present purpose is an implication network among these various re-
quirements on the choice function, which is summarized in the implication diagram of
Figure 1. Here, a double-headed arrow indicates equivalence, and a single-headed arrow
indicates implication. Some of these arrows have been established by Arrow [1] and Sen
[20], while the remaining ones will be proved in Section V.

(R)

(RR)

(B)

(A) (WARP) (FARP) (BTA)

(C)

(SARP)

Figure I

2 Arrow’s Theorem and Collective Rationality

We are ready to discuss the problem originally posed by Arrow [2]. Suppose that there
exist n individuals in the society and let N = {1, . . . , i, . . . , n} stand for the index set
of the individuals. In order to exclude a trivial case, we assume that n ≥ 2. An n-
tuple of preference orderings (R1, . . . , Ri, . . . , Rn), one ordering for each individual, will
be called a profile (of individual preference orderings). Corresponding to Ri, we define Pi
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by xPiy ⇔ (xRiy and not yRix). The problem of collective choice is to find a function
F , to be called a collective choice rule (CCR), which aggregates a profile into a collective
choice function:

(3) C = F (R1, . . . , Ri, . . . , Rn).

If an S ∈ K is specified as an available alternatives set, C(S) represents the set of socially
chosen elements from S when the profile (R1, . . . , Ri . . . , Rn) prevails. In what follows, we
will always assume universal domain (U) for F : F should be able to aggregate all logically
possible profiles. As a matter of terminology, we say that F satisfies the property ω if
F always yields a choice function having the property ω. (For example, if C determined
by (3) is always rational, we say that F is rational in itself.) Some other conditions on
CCR will be introduced when and where necessity dictates.

Arrow [2] has shown that there exists no CCR that satisfies the universal domain
(U), the regular-rationality (RR), the independence of irrelevant alternatives (I), the
Pareto rule (P) and the non-dictatorship (D). Here the conditions (I), (P) and (D) are
defined as follows. Let x and y be any two alternatives. A CCR F is said to sat-
isfy the condition (I) if, for any two profiles (R1, . . . , Rn) and (R′

1, . . . , R
′
n) such that

(xRiy ⇔ xR′
iy and yRix ⇔ yR′

ix) for all i ∈ N , we have C({x, y}) = C ′({x, y}); the
condition (P) if, for any profile (R1, . . . , Rn) such that xPiy for all i ∈ N , we have
{x} = C({x, y}); the condition (D) if there exists no individual i ∈ N such that, for
any profile (R1, . . . , Rn), xPiy ⇒ {x} = C({x, y}). Throughout in what follows we let
C = F (R1, . . . , Rn), and C ′ = F (R′

1, . . . , R
′
n).

Among these Arrow’s incompatible conditions on CCR, (P) and (D) can hardly be
objectionable, so that the culprit for Arrow’s phantom should be sought among (U),
(RR) and (I). In what follows, our attention will be focused upon the condition (RR).
(The relevance of the condition (U) is extensively discussed in Sen [21, Chapter 10] in the
context of simple majority decision, while condition (I) is critically examined by Hansson
[12].) Can we circumvent Arrow’s difficulty by weakening (RR) to some reasonable
extent?

In order to prepare for our answer to this question, it is necessary to introduce some
more conditions on CCR. First, there is the condition of the non-weak-dictatorship (WD).
Let x and y be any two alternatives. We say that F satisfies the condition (WD) if
there exists no i ∈ N such that, for any profile (R1, . . . , Rn), xPiy ⇒ x ∈ C({x, y}).
Clearly (WD) is a stronger version of (D). Second, there is the condition of the positive
responsiveness (PR). Let i ∈ N be any prescribed individual and let x and y be any two
alternatives. We say that F satisfies the condition (PR) if (a) (R1, . . . , Rn) is a profile
resulting in x ∈ C({x, y}), and (b) (R′

1, . . . , R
′
n) is another profile with Rj = R′

j for all
j ∈ N \ {i} and {(yPix and xI ′iy) or (xIiy and xP ′

iy)}, then {x} = C ′({x, y}).
We now put forward two theorems which are relevant in the context of the question

raised in this section.

Theorem 1. If n ≥ 4, there exists no CCR which satisfies (U), (FARP), (P), (I), (WD)
and (PR).
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Theorem 2. There exists a CCR which satisfies (U), (SARP), (P), (I), (WD) and (PR).

Note that the impossibility in Theorem 1 is turned into the possibility in Theorem
2 by simply replacing the condition (FARP) by the condition (SARP). Put differently,
in the presence of (U), (P), (I), (WD) and (PR), the gulf that separates possibility from
impossibility is located by Theorem 1 and Theorem 2 as being in between (FARP) and
(SARP).

3 Paradise Lost

It is now time to make some observations by comparing Arrow’s theorem, Theorem 1
and Theorem 2. First, let us compare Theorem 1 with Arrow’s theorem. In Theorem
1, Arrow’s rationality condition (RR) is substantially weakened into (FARP), but (D)
is strengthened into (WD), and (PR) (which does not appear in Arrow’s theorem) is
invoked. Therefore, strictly speaking, Theorem 1 is not a generalization of Arrow’s theo-
rem. It may, however, be claimed that (WD) and (PR) are still reasonable conditions on
a democratic collective choice rule and our Theorem 1 may be taken to mean that Ar-
row’s difficulty cannot be got rid of even if his rationality condition (RR) is substantially
weakened.

Let us next compare Theorem 1 with Theorem 2. We have noticed already that,
although (FARP) and (SARP) look quite similar, their implications in the context of
collective choice are very disparate. The contrast being sharp, we might be tempted
to say that the Arrovian impossibility depended squarely on the unjustifiably strong
collective rationality requirement such as (FARP) and that if we replaced (FARP) by
a weaker (SARP), the Arrovian phantom would go. Life would be happier then for
democrats if this could really be the end of the story. Unfortunately, however, this is not
the case. The gist is that the theory of collective choice is full of disturbing paradoxes
and Arrow’s theorem is only one eminent example.

Two more conditions on the CCR are to be introduced. The first one is a strengthened
version of the Pareto rule (P). Let S be any set in K and let (R1, . . . , Rn) be any
profile. Let y be any point in S. We say that F satisfies the strong Pareto rule (SP) if
{(xPiy for all i ∈ N) for some x ∈ S} ⇒ y /∈ C(S). In words, y should not be chosen out
of S if there exists an x in S that is unanimously preferred to y. The second condition
is what Sen [21] called the condition of minimal liberalism (ML), which reads as follows.
There are at least two individuals such that for each of them there is at least one pair of
alternatives over which he is decisive; that is, there is a pair of x, y such that if he prefers
x (respectively y) to y (respectively x), then society should prefer x (respectively y) to y
(respectively x) (Sen [21, p.154]).

Sen [21] has shown that there exists no CCR that satisfies universal domain (U),
rationality (R), the Pareto rule (P) and minimal liberalism (ML). This so-called liberal
paradox has been generalized by Batra and Pattanaik [3], from which it follows that
there exists no CCR that satisfies (U), (SARP), (SP) and (ML). This being the case, we
cannot but say that, although the replacement of (FARP) by (SARP) fares quite well
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in exorcising the Arrovian phantom, it cannot let the CCR be free from Sen’s liberal
paradox. The cloud is thicker here because the independence condition (I) (which has
also been suspected to be a possible culprit for Arrow’s difficulty) does not play any
role at all in establishing Sen’s paradox. Our conclusion is that, even if the collective
rationality condition is substantially weakened, we cannot eradicate the paradoxes of
collective decision.

4 Bergson-Samuelson Social Welfare Ordering

We now turn to discuss the logical foundation of the Bergson-Samuelson theory of Pare-
tian welfare economics. It has long been lamented that Arrow gave his collective choice
rule, which is, in our terminology, a regular-rational CCR, the name of social welfare
function. Clearly it is completely different from the Bergson-Samuelson social welfare
function which, according to Little, is “a ‘process or rule’ which would indicate the best
economic state as a function of a changing environment (i.e. changing sets of possibili-
ties defined by different economic transformation functions), the individual tastes being
given” (Little [14, p.423], Little’s italics). It is also claimed that “the only axiom re-
stricting Bergson social welfare function (of individualistic type) is a ‘tree’ property of
Pareto-optimality type” (Samuelson [17, p.49]). The purpose of the rest of this chapter
is to examine the possibility of this fixed profile theory of Paretian welfare economics.

Let us, therefore, fix a profile (R1, . . . , Ri, . . . , Rn) of the individual preference rela-
tions. Let a binary relation Q, to be called the Pareto unanimity relation, be defined by
(xQy ⇔ xRiy for all i ∈ N) for all x, y,∈ X. The asymmetric component PQ and the
symmetric component IQ of Q are defined, respectively, by (xPQy ⇔ xQy and not yQx)
and (xIQy ⇔ xQy and yQx).

A social welfare ordering (SWO) in the sense of Bergson and Samelson is an ordering
R such that {(xQy ⇒ xRy) and (xPQy ⇒ (xRy and not yRx))} for all x, y ∈ X. (In
words, an SWO is an ordering that preserves whatever information the Pareto unanimity
relation can tell us about the wishes of the individuals.) A social welfare function (SWF)
in the sense of Bergson and Samuelson is a numerical representation u of R : u(x) ≥
u(y) ⇔ xRy.

Our problem is to examine the existence of an SWO for a fixed profile. Thanks to the
work of Debreu [9] and others, we know that an SWO may not have an SWF representing
it. It may, however, be said that what is important is an SWO but not its numerical
representation.

Suppose that R1, . . . , Rn are orderings. In this case Q is a quasi-ordering, so that a
corollary of Szpilrajn’s theorem (Fishburn [10, Lemma 15.4]) assures us of the existence
of an SWO corresponding to the given profile. How about the case where Ri (i ∈ N) is
not necessarily transitive? Generally speaking, we cannot have an SWO in this case, as
the following examples where n = 3 and X = {x, y, z} exhibit.

xI1y, yI1z, zP1x xP1y, yI1z, zI1x
(A) yI2z, zI2x, xP2y (B) yI2z, zI2x, xP2y
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zI3x, xI3y, yP3z zI3x, xI3y, yP3z

(Notice here that in both profiles individual strict preference is transitive but individual
indifference is not.) In the case (A), we have xPQy, yPQz and zPQx, so that Q is cyclic and
there exists no ordering which can subsume this Q. In the case (B), we have xPQy, yPQz
and xIQz. Although this Q is acyclic, we cannot still have an ordering subsuming it.
Under what condition can Q have an ordering which subsumes it?

Our answer will be given via a general theorem on the extension of a binary relation.
Let R be a given binary relation. A t-tuple of alternatives (x1, x2, . . . , xt) is called a PR-
cycle of order t if we have x1Px2R . . . RxtRx1, where P is the asymmetric component of
R. We say that R is consistent if there exists no PR-cycle of any finite order. It is clear
that a consistent binary relation is acyclic but not vice versa. An ordering R∗ is said to
be an extended ordering of R if {(xRy ⇒ xR∗y) and (xPy ⇒ xP ∗y)} for all x, y ∈ X,
where P ∗ is the asymmetric component of R∗. We can now state a theorem on the
existence of extended ordering.

Theorem 3. A binary relation R has an extended ordering R∗ if and only if R is
consistent .

In passing we note that Champernowne [7] introduced a concept of consistent pref-
erence (or probability) relations which is similar to but distinct from ours. We say
that a t-tuple (x1, x2, . . . , xt) is a C-cycle of order t if x1(P ∪ N)x2R . . . RxtRx1, where
{x1(P ∪N)x2 ⇔ (x1Px2 or x1Nx2)}, {x1Nx2 ⇔ (not x1Rx2 and not x2Rx1)}. R is said
to be Champernowne-consistent if there exists no C-cycle of any finite order. Unfor-
tunately it turns out that R is Champernowne-consistent if and only if it is transitive.
Clearly we have only to show that Champernowne consistency implies transitivity. Sup-
pose that R is not transitive. Then we have xRy, yRz but not xRz for some x, y, z ∈ X.
Therefore we have z(P ∪N)xRyRz, so that (z, x, y) is a C-cycle of order 3. In order to
show that our concept of consistency does not reduce to transitivity, we give an example.
Let X = {x, y, z} and let R be defined by xPy, yRz and xNz.

It follows from Theorem 3 that a social welfare ordering exists for a profile (R1, . . . , Rn)
if and only if the Pareto unanimity relation Q corresponding to this profile is consistent.
In this context, it is worth our while to note that the transitivity of an Ri implies that
of strict preference Pi and of indifference Ii, and cases against transitive indifference
are plenty. This being the case, it is interesting to see that we can define an SWO
corresponding to a profile (R1, . . . , Rn) even if Ri is not necessarily transitive so far as Q
satisfies the axiom of consistency. The contrast between the variable profile framework
of the Arrow-Sen theory, which leads us to the logical impossibility even under weakened
rationality requirement, and the fixed profile framework of the Bergson-Samuelson theory,
which can even accommodate some individual preference intransitivity, is made sharper
than ever.
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5 Proofs

Proof of the Implication Diagram
First, we show that (C) implies (FARP). Let x and y be such that C({x, y}) = {x}

and take a superset S ∈ K of {x, y}. By virtue of (C), we have {x, y}∩C(S) ⊂ C({x, y}),
so that y /∈ C(S).

Second, we show that (FARP) implies (BTA). If (BTA) is not satisfied by C, there
exist x, y and z in X such that C({x, y}) = {x}, C({y, z}) = {y} and C({x, z}) = {z}.
Suppose that C satisfies (FARP). Then x does not belong to C({x, y, z}), because {z} =
C({x, z}). Similarly, neither y nor z belong to C({x, y, z}). Thus C({x, y, z}) = ∅, a
contradiction. Therefore (FARP) implies (BTA).

Third, it will be shown that (B) implies (SARP). If C does not satisfy (SARP), there
exist x, y ∈ X and S ∈ K such that C({x, y}) = {x}, x ∈ S \ C(S) and y ∈ C(S). Let
S ′ = {x, y}. Then S ′ ⊂ S, S ′ ∩ C(S) 6= ∅, but x /∈ S ′ ∩ C(S) and x ∈ C(S ′), so that (B)
does not hold. Therefore, (B) implies (SARP).

In order to show that a single-headed arrow in the diagram cannot in general be
reversed, we put forward the following examples.

Example 1. X = {x, y, z}, K = {S1, . . . , S7}, S1 = {x}, S2 = {y}, S3 = {z}, S4 =
{x, y}, S5 = {y, z}, S6 = {x, z}, S7 = X,C(St) = St (t = 1, 2, 3), C(S4) = S1, C(S5) =
S2, C(S6) = S3 and C(S7) = S7.

Example 2. The same as Example 1 except for C(S6) = S6 and C(S7) = S2.

Example 3. The same as Example 1 except for C(S6) = S6 and C(S7) = S1.

Example 4. The same as Example 1 except for C(S6) = S1.

Example 5. The same as Example 1 except for C(S4) = S4, C(S5) = S5 and C(S6) = S6

and C(S7) = S1.

Example 6. X = {w, x, y, z}, K = {S1, . . . , S15}, S1 = {x}, S2 = {y}, S3 = {z}, S4 =
{w}, S5 = {w, x}, S6 = {w, y}, S7 = {w, z}, S8 = {x, y}, S9 = {x, z}, S10 =
{y, z}, S11 = {w, x, y}, S12 = {w, x, z}, S13 = {w, y, z}, S14 = {x, y, z}, S15 =
X, C(St) = St (t = 1, . . . , 10), C(S11) = S8, C(S12) = S1, C(S13) = S2, C(S14) = S1

and C(S15) = S2.

The choice function in Example 1 satisfies (SARP) but not (FARP), so that (SARP) does
not necessarily imply (FARP). The choice function in Example 2 satisfies (BTA) but not
(FARP), so that (BTA) does not imply (FARP) in general. (Incidentally, Example 1
gives a choice function which satisfies (SARP) but not (BTA), while the choice function
in Example 2 satisfies (BTA) but not (SARP). It follows, therefore, that (SARP) and
(BTA) are generally independent.) The choice function in Example 3 satisfies (R) without
satisfying (RR), so that (R) does not imply (RR). This choice function does not satisfy
(B), so that (R) does not imply (B). The choice function in Example 4 satisfies (B) but
not (R), so that a fortiori it does not satisfy (RR). Thus (RR) is not implied by (B).
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The choice function given by Example 5 satisfies (C) without satisfying (R), so that (C)
does not necessarily imply (R). It can be seen that the choice function in Example 6
satisfies (FARP) but not (C), neither does it satisfy (WARP). Therefore, (FARP) does
not imply (C) in general, neither does (FARP) imply (WARP). Finally we note that the
choice function in Example 6 satisfies (SARP) but not (B), so that (SARP) does not
imply (B) in general. Q. E. D.

Proof of Theorem 1. It has been shown by Blair et al. [5] that, if n ≥ 4, there exists
no CCR which satisfies (U), (BTA), (P), (I), (WD) and (PR) (see also Sen [23]). Our
implication diagram shows that (FARP) is a stronger requirement on CCR than (BTA),
so that a fortiori it is incompatible with (U), (P), (I), (WD) and (PR), establishing
Theorem 1. Q. E. D.

Let R and S be, respectively, a binary relation on X and a subset of X. A sequence
of relations {R(n)

S }∞n=1 is then defined recursively by R
(1)
S = R, R

(n)
S = RR

(n−1)
S = {(x, y) :

(x, z) ∈ R and (z, y) ∈ R
(n−1)
S for some z ∈ S} (n ≥ 2). The transitive closure of R

relative to S is a binary relation which is defined by T (R|S) = ∪∞n=1R
(n)
S . For simplicity

we let T (R) = T (R|X).

Proof of Theorem 2. For any profile (R1, . . . , Rn), let N(xRiy) be the number of
individuals who regard x to be at least as good as y. We define an R by [xRy ⇔
N(xRiy) ≥ N(yRix)] for all x, y ∈ X and define a CCR F by associating a choice
function C(S) = GT (R|S)(S) with (R1, . . . , Rn). It is easy to verify that this CCR satisfies
(U), (B), (P), (I), (WD) and (PR) (see Bordes [6]). Our implication diagram shows that
(SARP) is a weaker requirement on CCR than (B), so that a fortiori it is compatible
with the requirements (U), (P), (I), (WD) and (PR). Hence Theorem 2. Q. E. D.

Proof of Theorem 3. (a) Necessity proof. Suppose that R has an extended ordering
R∗. Let t be any finite positive integer and suppose that we have x1Px2R . . . Rxt for
some x1, x2, . . . , xt in X. Then we have x1P ∗x2R∗ . . . R∗xt, which yields x1P ∗xt, thanks
to the transitivity of R∗. Thus we have (not xtR∗x1), which implies (not xtRx1). It
follows that if R has an extended ordering, it has to be consistent.

(b) Sufficiency proof . Let the identity ∆ be defined by ∆ = {(x, x) : x ∈ X}. We
define a binary relation Q by

(4) Q = ∆ ∪ T (R).

We show that Q is a quasi-ordering. Reflexivity is obvious. In order to show its tran-
sitivity, let (x, y), (y, z) ∈ Q. If (x, y), (y, z) ∈ T (R), we have (x, z) ∈ T (R) ⊂ Q. If
(x, y) ∈ ∆ (resp. (y, z) ∈ ∆), we have x = y (resp. y = z), so that (x, z) ∈ Q follows
from (y, z) ∈ Q (resp. (x, y) ∈ Q). Q being a quasi-ordering, it has an extension that
is an ordering (see, for example, Fishburn [10, Lemma 15.4]). If we can show that Q is
an extension of R, we are home. For that purpose, we have to show that R is included
in Q and P in PQ (asymmetric component of Q). The former is obvious. To prove the
latter, assume (x, y) ∈ P , which means (x, y) ∈ R and (y, x) /∈ R. From (x, y) ∈ R it
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follows that (x, y) ∈ Q, so that we have only to prove that (y, x) /∈ Q. Assume, therefore,
that (y, x) ∈ Q. Clearly (y, x) /∈ ∆, otherwise we cannot have (x, y) ∈ P . It follows
that (y, x) ∈ T (R). When (x, y) ∈ P is added to this, we obtain a PR-cycle, and this
contradiction proves the theorem. Q. E. D.
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Chapter 11
Paretian Welfare Judgements and

Bergsonian Social Choice∗

In the wake of a harsh ordinalist criticism in the 1930s against the epistemological basis of
the ‘old’ welfare economics created by Pigou, several attempts were made to salvage the
wreckage of Pigou’s research agenda by reformulating welfare economics altogether on
the basis of ordinal and interpersonally non-comparable welfare information and nothing
else. The seminal concept of the Pareto principle to the effect that a change from a
state x to another state y can be construed as socially good if at least one individual
is made better off without making anybody else worse off in return came to the fore,
and the characterisation and implementation of the Pareto efficient resource allocations
became the central exercise in the “new” welfare economics. However, since almost every
economic policy cannot but favour some individuals at the cost of disfavouring others,
there will be almost no situation of real importance where the Pareto principle can claim
direct relevance.

Two distinct approaches were explored to rectify this unsatisfactory state of welfare
economics. The first approach was the introduction of compensation criteria by Kaldor
[12], Hicks [11], Scitovsky [19] and Samuelson [18], which endeavoured to expand the
applicability of the Pareto principle by introducing hypothetical compensation payments
between gainers and losers. According to Graaff [8, pp.84-85], “[t]he compensation tests
all spring from a desire to see what can be said about social welfare or ‘real national
income’... without making interpersonal comparisons of well-being ... . They have com-

∗First published in Economic Journal, Vol.109, 1999, pp.204-220. Reprinted in Wood, J. C. and
M. McLure, eds., Paul A. Samuelson: Critical Assessments of Contemporary Economists, 2nd Series,
London: Routledge, 2004, pp.378-396. This chapter capitalises on Suzumura [29], and generalises the
main theorem that first appeared there. The basic idea was presented at the Fourth Osnabrück Seminar
on Individual Decisions and Social Choice held at the University of Osnabrück, September 14, 1996, the
Research Seminar at the Institute for Social and Economic Research held at Osaka University, January
22, 1997, the Far Eastern Meeting of the Econometric Society held at the Chinese University of Hong
Kong, July 24-6, 1997, and the Fourth International Meeting of the Society for Social Choice and Welfare
held at the University of British Colombia, July 3-6, 1998. I am grateful to Professors Nick Baigent,
David Donaldson, Wulf Gaertner, Philippe Mongin, Prasanta Pattanaik, Koichi Tadenuma, Yongsheng
Xu, and Akira Yamazaki for their helpful comments and discussions at several stages of the evolution of
this chapter. Last but surely not least, my sincere thanks go to the editor in charge, Professor Timothy
Besley, and the two referees of Economic Journal for their helpful comments and suggestions. Needless
to say, I am solely, responsible for any remaining defects of this chapter.
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mon origin in Pareto’s definition of an increase in social welfare — that at least one man
must be better off and no one worse off — but they are extended to situations in which
some people are made worse off.” The second attempt was the introduction of the novel
concept of a social welfare function by Bergson [3] and Samuelson [17, Chapter 8], which
is rooted in the belief that the analysis of the logical consequences of any value judge-
ments, irrespective of whose ethical beliefs they represent, whether or not they are widely
shared in the society, or how they are generated in the first place, is a legitimate task
of welfare economics. The social welfare function is nothing other than the formal way
of characterising such an ethical belief which is rational in the sense of being complete
as well as transitive over the alternative states of affairs. A Paretian (or individualistic)
social welfare function is one which judges in concordance with the Pareto principle if the
latter does have relevance. It was Arrow [1, p. 108] who neatly crystallised the gist of this
approach as follows: “[T]he ‘new welfare economics’ says nothing about choices among
Pareto-optimal alternatives. The purpose of the social welfare function was precisely to
extend the unanimity quasi-ordering to a full social ordering.”

Capitalising on Graaff’s and Arrow’s insightful observations on the nature and sig-
nificance of these two schools of thought, where the concept of an extension of the
Pareto quasi-ordering plays a crucial role in common, this chapter examines the logical
performance of the new welfare economics. To be more precise, we synthesise the two
approaches to the new welfare economics and identify a condition under which the new
welfare economics is logically impeccable. The usefulness of our condition is two-fold.
In the first place, we may thereby check whether or not the hypothetical compensation
criteria proposed by Kaldor, Hicks, Scitovsky and Samuelson can serve as a useful pre-
liminary step towards final rational social choice. In the second place, we can thereby
cast a new light on some recent attempts to define several plausible quasi-orderings on
social welfare including Suppes [23], Sen [20; 21], Fine [7], Blackorby and Donaldson [4]
and Madden [15] vis-à-vis the analytical scenario of the new welfare economics.

It is hoped that the preceding attempts in the new welfare economics along vari-
ous routes can be systematically understood and neatly evaluated with reference to our
analysis in this chapter.

1 Motivation and Illustration

To motivate our analysis intuitively, and to illustrate the nature of our central theorem
neatly, let us begin by examining a situation where a policy-maker should make demo-
cratic collective decisions by paying due respect for opinions expressed by citizens. For
simplicity, suppose that there are only two citizens, say 1 and 2, and only three options,
say, x, y and z. Citizens are free to express their preference orderings on X = {x, y, z}.
Without loss of generality, assume that citizens can express strict preferences only. Then
there are six logically possible preference orderings, say α, β, γ, δ, ε and ζ on X, which
may possibly be expressed.

Figure 1 describes these possible preference orderings, where options are arranged
vertically with the more preferred options being located above the less preferred ones.
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For example, α is one of the preference orderings, according to which x is preferred to y, y
is preferred to z, hence x is preferred to z. Arranging these possible preference orderings
vertically and horizontally, we may construct a box in Figure 2 with 36 cells, where the
vertical (resp. horizontal) list refers to citizen 1’s (resp. citizen 2’s) expressed preference
orderings. Clearly, each and every cell in Figure 2 represents a profile of the two citizens’
expressed preference orderings. For example, the cell (α, β) represents a profile in which
citizen 1 expresses α and citizen 2 expresses β.

What we call a Bergson-Samuelson social welfare ordering is nothing other than
a preference ordering from the society’s viewpoint specified for each and every cell in
Figure 2 which guides the rational collective decision to be made by the policy-maker.
A Bergson-Samuelson social welfare ordering is Paretian or individualistic if it accepts
everything that the Pareto principle tells us about the social desirability of one option
vis-à-vis the other. For simplicity, we will refer to “what the Pareto principle tells us
about the social desirability of one option vis-à-vis the other” collectively as the Paretian
welfare judgements . To be democratic, it is minimally required that the policy-maker is
ready to accept the Paretian welfare judgements.

α β γ δ ε ζ

x x y y z z

y z x z x y

z y z x y x

Figure 1. Possible Preference Orderings

To what extent do the Paretian welfare judgements restrict the admissible class of
Paretian Bergson-Samuelson social welfare orderings to be filled in each and every cell?
Clearly the answer hinges squarely on the extent to which the two citizens agree on
their individual preference orderings. Note that there are six cells (α, α), (β, β), (γ, γ),
(δ, δ), (ε, ε) and (ζ, ζ), along the main diagonal in Figure 2, where the two citizens express
exactly the same preference orderings α, β, γ, δ, ε and ζ, respectively. Therefore, by virtue
of the Pareto principle and nothing else, the Paretian Bergson-Samuelson social welfare
ordering corresponding to these cells cannot but be α, β, γ, δ, ε and ζ, respectively, so
that nothing is left for any other principle to bridge the Paretian welfare judgements to
the Paretian Bergson-Samuelson social welfare ordering. In all other cells in Figure 2,
the extent of interpersonal agreements of preferences among citizens is less than perfect.
However, there are two distinct categories to be identified and separately addressed. The
first category consists of those cells where only one pair of options is left to be socially
ordered in order to bridge the Paretian welfare judgements to the Paretian Bergson-
Samuelson social welfare ordering, whereas the second category consists of those cells
where at least two pairs of options are left to be socially ordered before the Paretian
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welfare judgements can be completed into the Paretian Bergson-Samuelson social welfare
ordering.

α β γ δ ε ζ

α

β

γ
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ε

ζ ζ

ε
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xPy
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xPy
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yPx
zPx

zPy

Figure 2. Implications of the Pareto Principle

Take, for example, the cell (α, β), where the Pareto principle is enough to tell us that
xPy and xPz, that is to say, the policy-maker must accept that x is socially preferred to
both y and z. Only one pair of options, viz. {y, z}, is left to be socially ordered before
we arrive at a fully-fledged Paretian Bergson-Samueslon social welfare ordering, so that
this cell is of the first category. If y (resp. z) is judged somehow socially better than z
(resp. y) in this cell, then we have xPy, yPz and xPz, (resp. xPz, zPy and xPy), so
that the Paretian Bergson-Samueslon social welfare ordering to be filled in this cell is
uniquely determined to be α (resp. β). It is clear that the cells in Figure 2 which compose
the first category consist of (α, β), (α, γ), (β, α), (β, ε), (γ, α), (γ, δ), (δ, γ), (δ, ζ), (ε, β),
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(ε, ζ), (ζ, δ) and (ζ, ε). By definition, the step of deleting the residual indeterminacy in
the cells of the first category is in fact nothing other than the final step rather than
the preliminary step in the transition from the Paretian welfare judgements to the fully-
fledged Paretian Bergson-Samuelson social welfare ordering. Since the asserted raison
d’être of the new welfare economics lies in its preliminary role in expanding the Pareto
principle in the presence of conflict of judgements among citizens without using anything
that goes beyond intrapersonally ordinal and interpersonally non-comparable information
on well-being, we will focus mostly on the cells (profiles) of the second category.1

Consider the cell (α, δ) which is clearly of the second category. Since the Pareto
principle tells us that yPz and nothing else in this cell, the feasible candidates for the
Paretian Bergson-Samuelson social welfare ordering in this cell are limited to α, γ and
δ. Without loss of generality, suppose that α is the relevant social welfare ordering
in this cell, and consider the set of partial welfare judgements which not only strictly
extend the Paretian welfare judgements, but also are strictly subsumed in the Paretian
Bergson-Samuelson social welfare ordering α. It is easy to check that two partial welfare
judgements exist, which satisfy these two requirements, viz. (i) Q1, which says that y is
socially better than z and x is socially better than z, and (ii) Q2, which says that x is
socially better than y and y is socially better than z. Note that, according to Q1, the
policy-maker should not choose z, as it is dominated by x as well as by y in terms of
social welfare. Likewise, according to Q2, the policy-maker should choose neither y nor z,
as they are both dominated by x in terms of social welfare. It then follows that there is
only one option in the sex X = {x, y, z} of all alternatives, viz. x, which is not excluded
by any one of the two partial welfare judgements Q1 and Q2. As a matter of fact, this
social choice of x is in full concordance with the choice according to the optimisation of
the Paretian Bergson-Samuelson social welfare ordering α.

This remarkable result is not an accidental outcome of our fortuitous choice of a cell
of the second category, viz. (α, δ), neither is it due to our cunning choice of a particular
Paretian Bergson-Samuelson social welfare ordering α. Indeed, what our main theorem
guarantees is that this property is in fact a robust result which holds for all profiles of
citizens’ preference orderings of the second category in a society with arbitrary number
of citizens and options.

It is also important to realise the implication of this result. It suggests unambiguously
that the research programme of the new welfare economics is logically impeccable in the
following sense: For each and every Paretian Bergson-Samuelson social welfare ordering
R, the social choice set from any opportunity set S in accordance with the optimisation of
this R over S can be recovered by finding the undominated subsets of S for each and every
partial preference relation, which is a strict sub-relation of R as well as a strict extension
of the Paretian welfare judgements, and taking the intersection of these undominated
subsets. Thus, the preliminary step advocated by the new welfare economics serves us

1The proportion occupied by cells of the second category over the total number of cells is 18/36 = 0.5
in the situation with two citizens and three options, where citizens are allowed to express strict preference
orderings only. It is easy, if tedious, to verify that this proportion increases to 120/169 ≈ 0.71 when two
citizens are allowed to express occasional indifference among three options. For societies with more than
two citizens and more than three options, this proportion will surely increase even further.
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well in locating the rational choice exactly in terms of the Paretian Bergson-Samuelson
social welfare ordering. In other words, the new welfare economics can indeed help the
policy-maker to identify the rational social choice, at least in principle.

So much for the motivation and implication of our subsequent analysis. Let us now
proceed to the proper analysis in a general setting.

2 Maximal Set, Greatest Set and Extensions of a

Binary Relation

To facilitate our analysis for a society with arbitrary number of individuals and alter-
natives, let us summarise some basic properties of binary relations, maximal sets and
greatest sets and present an extension theorem for consistent binary relations, which will
play a crucial role in what follows.

Let X be the universal set of alternatives. A binary relation on X is a subset R of
X ×X. It is customary to write, for all x, y ∈ X, xRy if and only if (x, y) ∈ R. When
a binary relation R satisfies completeness (For all x, y ∈ X, x 6= y implies {(x, y) ∈ R
or (y, x) ∈ R}), reflexivity (For all x ∈ X, (x, x) ∈ R) and transitivity (For all x, y, z ∈
X, {(x, y) ∈ R & (y, z) ∈ R} implies (x, z) ∈ R), we say that R is an ordering on X. If
R satisfies reflexivity and transitivity, but not necessarily completeness, we say that R is
a quasi-ordering .

For any binary relation R on X, let P (R) and I(R) denote, respectively, the asym-
metric part of R and the symmetric part of R, which are defined by P (R) = {(x, y) ∈
X×X | (x, y) ∈ R & (y, x) /∈ R} and I(R) = {(x, y) ∈ X×X | (x, y) ∈ R & (y, x) ∈ R}.
If R stands for an agent’s preference relation over the set X of options, where xRy for
some x, y ∈ X means that this agent judges x to be at least as good as y, P (R) and I(R)
stand, respectively, for his/her strict preference relation and indifference relation. If R
is transitive, P (R) as well as I(R) satisfies transitivity.

For any binary relation R and any non-empty subset S of X, an element x ∈ S is
an R-maximal element of S if (y, x) /∈ P (R) holds for all y ∈ S. The set of all R-
maximal elements of S is the R-maximal set of S, to be denoted by M(S, R). Likewise,
an element x ∈ S is an R-greatest element of S if (x, y) ∈ R holds for all y ∈ S. The set
of all R-greatest elements of S is the R-greatest set of S, to be denoted by G(S,R). The
best known example of the R-maximal set M(S, R) may be the set of Pareto efficient
allocations, where S stands for the set of all feasible allocations and R stands for the
unanimity quasi-ordering such that (x, y) ∈ R holds if and only if everybody in the
society regards x to be at least as good as y. The best known example of the R-greatest
set G(S, R) may be the demand correspondence of a consumer, where S denotes his/her
budget set and R denotes his/her preference ordering.

The following lemma, which is a straightforward consequence of the definitions of a
maximal set and a greatest set, will prove useful in our analysis. A formal proof of this
lemma is available in Sen [20, Chapter 1∗] if necessary. See also Sen [22] and Suzumura
[27, Chapter 2].
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Lemma 1

(a) G(S, R) ⊂ M(S, R) holds for all (S, R).
(b) G(S,R) = M(S, R) holds for all (S, R) such that R is complete.

A choice function C on a family K of non-empty subsets of X maps each and every
S ∈ K into a non-empty subset C(S) of S, which is called the choice set from the
opportunity set S. A choice function C on K is rational if and only if there exists
an underlying preference ordering R, to be called the rationalisation of C, such that
C(S) = G(S, R) holds for all S ∈ K. Thus, a rational choice is a choice in accordance
with the optimisation of an underlying preference ordering.2.

For any binary relation R on X, a binary relation R∗ on X is called an extension of
R if and only if R ⊂ R∗ and P (R) ⊂ P (R∗). Thus, an extension R∗ of R retains all the
information that R already contains, and goes possibly further. Note, in particular, that
the asymmetric part P (R) of R must be subsumed in the asymmetric part of R∗. When
R∗ is an extension of R, R is in turn called a sub-relation of R∗.

Let Σ(R) denote the set of all sub-relations of R. Then we have the following simple
properties of the maximal sets and the greatest sets:

Lemma 2

If Q ∈ Σ(R), then M(S,R) ⊂ M(S,Q) and G(S, Q) ⊂ G(S,R).

Proof : Obvious from the respective definitions of a maximal set, a greatest set and
an extension of a binary relation. ‖

Under what conditions can there be an extension of a binary relation that satisfies
the axioms of an ordering? As an auxiliary step in answering this crucial question of the
existence of an ordering extension, we introduce the following two weaker versions of the
transitivity axiom.

First, a binary relation R is acyclic if and only if there exists no finite subset
{x1, x2, . . . , xt} of X, where 2 ≤ t < +∞, such that (x1, x2) ∈ P (R), (x2, x3) ∈ P (R), . . . ,
(xt, x1) ∈ P (R). Second, a binary relation R is consistent if and only if there exists no fi-
nite subset {x1, x2, . . . , xt} of X, where 2 ≤ t < +∞, such that (x1, x2) ∈ P (R), (x2, x3) ∈
R, . . . , (xt, x1) ∈ R. It is clear that transitivity of R implies consistency thereof, while
consistency of R implies acyclicity thereof. The converse of each one of these implications
is not true in general. Indeed, if we define R1 and R2 on X = {x, y, z} by

R1 = {(x, y), (y, z), (z, y)}; R2 = {(x, y), (y, z), (z, y), (x, z), (z, x)},
2In the general theory of rational choice functions, a choice function is called rational if an underlying

preference relation exists irrespective of whether the preference relation in question satisfies the axioms
of an ordering. A rational choice function whose underlying preference relation satisfies the axioms of an
ordering is called a fully rational choice function. See, for example, Suzumura [24; 27, Chapter 2]. Since
we are concerned in this chapter only with a choice function which is rationalised by a Paretian Bergson-
Samuelson social welfare ordering, however, we can do without introducing the concept of degrees of
rationality altogether.
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it is clear that R1 is consistent but not transitive, whereas R2 is acyclic but not consistent.
If R is complete, however, R is consistent if and only if it is transitive.

We are now ready to state the following basic extension theorem.

Lemma 3 (Suzumura [24, Theorem 3; 27, Theorem A(5)]3

A binary relation R has an ordering extension if and only if it is consistent.

Let Ω(X) stand for the set of all reflexive and consistent binary relations on X. It
is clear that Σ(R) ⊂ Ω(X) holds for any ordering R on X by virtue of Lemma 3. It is
also clear that R ∈ Σ(R) holds for any binary relation R, viz. any binary relation R is
an extension of itself. Noting this fact, we call a binary relation Q ∈ Σ(R)\{R} a strict
sub-relation of R. R is then called a strict extension of Q.

So much for purely technical preliminaries. Let us now formally introduce our social
choice problem.

3 The Pareto Quasi-Ordering and Bergson-Samuelson

Social Welfare Orderings

Let X := {x, y, z, . . .} and N := {1, 2, . . . , n} be the set of all social states and the set
of all individuals in the society, where 3 ≤ #X and 2 ≤ n := #N < +∞.4 A social
state means a complete description of economic, social and all other features of the world
which may possibly influence the well-being of individuals.

Each individual i ∈ N is assumed to have a weak preference (“at least as good as”)
relation Ri on X, which satisfies the axioms of an ordering on X, such that xRiy holds
if and only if x is judged by i to be at least as good as y. By definition, P (Ri) and I(Ri)
stand for i’s strict preference relation and his/her indifference relation, respectively.

Given a list of individual preference ordering RN = (R1, R2, . . . , Rn), to be called a
profile for short, we define the Pareto quasi-ordering ρ(RN) by

ρ(RN) = ∩Ri over all i ∈ N.5 (1)

By definition, (x, y) ∈ ρ(RN) if and only if xRiy for all i ∈ N , whereas (x, y) ∈ P (ρ(RN))
if and only if xRiy for all i ∈ N , and xP (Ri)y for at least one i ∈ N . Within this
conceptual framework, the problem confronted by the two schools of the new welfare
economics may be neatly formulated as follows.

Recollect that the compensation criteria were designed to extend the applicability
of the Pareto principle through hypothetical compensatory payments between gainers

3Since transitivity is a sufficient but not necessary condition for consistency, this theorem is in fact a
generalisation of the classical theorem to Szpilrajn [30]. See also Arrow [1, p.64] and Sen [20, Chapter
1∗] for the role and importance of the extension theorems.

4For each set A, #A stands for the number of elements in A.
5Ri being an ordering for every i ∈ N, ρ(RN ) satisfies reflexivity and transitivity, which is why ρ(RN )

is called the Pareto quasi-ordering.
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and losers. Let Q denote the generic binary relation representing the partial welfare
judgements thus defined. The first task for this school of thought is to ensure that Q is a
strict extension of ρ(RN), viz. ρ(RN) ∈ Σ(Q)\{Q}, since this school intends to go beyond
the Pareto principle without losing what the latter principle already informs us of social
welfare. But this is only half of the full story. Since the compensation criteria provide only
a preliminary step towards final social choice, which should be rationalised by a Paretian
Bergson-Samuelson social welfare ordering, the mission will be left unaccomplished if
what is meant to be a preliminary step turns out to preclude the possibility of final
rational social choice. In other words, for the success of the compensationist school of
thought, it is necessary that Q should be a strict sub-relation of at least one Paretian
Bergson-Samuelson social welfare ordering R so that we have Q ∈ Σ(R)\{R}.

We have thus identified the research programme of the new welfare economics as that
of defining a principle of compensation between gainers and losers so as to generate partial
welfare judgements Q such that (i) ρ(RN) ∈ Σ(Q)\{Q}, and (ii) Q ∈ Σ(R)\{R} for some
Paretian Bergson-Samuelson social welfare ordering R. It follows from this observation
and Lemma 3 that this research programme will be vacuous unless Q is guaranteed to
be consistent. This is a useful remark, as it enables us to check whether the promise of
the compensationist new welfare economics can be logically fulfilled.

4 The Recoverability Theorem

The research programme of the new welfare economics can be located in a wider per-
spective with fruitful implications. Let R be a Paretian Bergson-Samuelson social welfare
ordering corresponding to a given profile RN = (R1, R2, . . . , Rn) of individual preference
orderings. Let Θ(RN , R) stand for the set of all partial welfare judgements, to be called
the test relations for short,6 which are strict extension of ρ(RN) as well as strict sub-
relation of R:

Θ(RN , R) := {Q ⊂ X ×X | ρ(RN) ∈ Σ(Q)\{Q} & Q ∈ Σ(R)\{R}}. (2)

It is worthwhile to repeat why we should exclude ρ(RN) and R from the set Θ(RN , R).
The reason is squarely rooted in the very nature of the new welfare economics. Recollect
that the research programme of this school of welfare economics is to go beyond the Pareto
principle and to provide a preliminary step towards the Paretian Bergson-Samuelson
social welfare ordering that rationalises the final social choice. Thus, ρ(RN) as well as R
cannot possibly qualify as the test relations in our analytical scenario, as ρ(RN) (resp.
R) does not in fact go beyond the Pareto quasi-ordering (resp. is not in fact a preliminary
step in locating R).

At this juncture of our analysis, it is useful to observe that Lemma 1 and Lemma 2
may assert that

G(S,R) = M(S, R) ⊂ M(S, Q) (3)

6This convenient terminology was suggested to me by one of the referees of Economic Journal .
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holds for any S ∈ K and Q ∈ Θ(RN , R), So that we may assert that

∀S ∈ K : C(S) := G(S, R) ⊂ ∩M(S, Q) over all Q ∈ Θ(RN , R), (4)

holds, where C is the social choice function on K, which is rationalised by the Paretian
Bergson-Samuelson social welfare ordering R. Thus, by defining the intersection of all
the maximal sets with respect to each and every test relation Q ∈ Θ(RN , R), we can
locate the area from which the final rational social choice in accordance with the Paretian
Bergson-Samuelson social welfare ordering cannot escape.

Going one step further, suppose that (4) can be strengthened into the following set-
theoretic equality:

∀S ∈ K : C(S) := G(S, R) = ∩M(S, Q) over all Q ∈ Θ(RN , R). (5)

According to (5), the social choice function C, which is rationalisable by the Paretian
Bergson-Samuelson social welfare ordering R, can be exactly recovered by the maximisa-
tion of each and every test relation Q ∈ Θ(RN , R). Therefore, it makes sense to assert
that the search for the test relations that are strict extensions of the Pareto quasi-ordering
ρ(RN) as well as strict sub-relations of the Paretian Bergson-Samuelson social welfare
ordering R is a legitimate and effective preliminary step for final rational social choice
if and only if (5) holds true. It is in this sense that the search for the conditions under
which (5) holds true is of crucial importance for the logical completeness of the new
welfare economies.

To orient our analysis, consider the following example:

Example 1 : Suppose that X = {x, y, z} and RN = (R1, R2) are such that R1 =
∆(X) ∪ {(x, y), (y, z), (x, z)} and R2 = ∆(X) ∪ {(y, x), (x, z), (y, z)}, where ∆(X) :=
{(x, x), (y, y), (z, z)}, denotes the diagonal binary relation on X. Let the Paretian Bergson-
Samuelson social welfare ordering be given by R = ∆(X) ∪ {(x, y), (y, z), (x, z)}. In this
situation, we have ρ(RN) = ∆(X)∪ {(y, z), (x, z)} and there exists no binary relation Q
that satisfies ρ(RN) ∈ Σ(Q)\{Q} and Q ∈ Σ(R)\{R}. Thus, we have Θ(RN , R) = ∅
for this RN and R. ‖

The message of this example is simple. If the degree of interpersonal difference of
preferences is small enough as in Example 1, it may turn out that Θ(RN , R) is empty for
the given profile RN of individual preference orderings and the given Paretian Bergson-
Samuelson social preference ordering R. It is to confine ourselves to the interesting
situations that we introduce the following assumption of non-triviality :

Assumption NT
Θ(RN , R) is non-empty for the given profile RN = (R1, R2, . . . , Rn) of individual prefer-
ence orderings and the given Paretian Bergson-Samuelson social welfare ordering R.

Mild and innocuous though the assumption NT may look, it enables us to prove the
following recoverability theorem:
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Recoverability Theorem

For any given profile RN = (R1, R2, . . . , Rn) of individual preference orderings, the ra-
tional social choice in accordance with the specified Paretian Bergson-Samuelson social
welfare ordering R can be fully recovered by finding the maximal set for each and every
test relation Q ∈ Θ(RN , R) and taking the intersection of these maximal sets if and only
if the assumption NT is satisfied .

It should be clear that the Recoverability Theorem verifies the general validity of what
we have illustrated in Section 2 in terms of a simple case of two citizens and three options,
and for the profile of citizens’ preference orderings of the second category. Clearly, it also
suffices to establish the logical completeness of the research programme of the new welfare
economics. Since the proof of the Recoverability Theorem is slightly involved, it will be
relegated into Section 5, which may be neglected by those who are not interested in minor
technicalities.

There may be some readers who are interested in knowing whether or not a stronger
version of the recoverability property holds. Let Ω∗(X) be the set of all quasi-orderings
on X, and define the set Θ∗(RN , R) by

Θ∗(RN , R) := Ω∗(X) ∩Θ(RN , R). (6)

By construction, Q ∈ Θ∗(RN , R) holds if and only if (i) Q is a quasi-ordering on X,
(ii) Q is a strict extension of the Pareto quasi-ordering ρ(RN), and (iii) Q is a strict
sub-relation of R. Since it is clear that Θ∗(RN , R) ⊂ Θ(RN , R) holds, we may assert
that

∀S ∈ K : C(S) := G(S, R) ⊂ ∩M(S, R) over all Q ∈ Θ(RN , R)

⊂ ∩M(S, R) over all Q ∈ Θ∗(RN , R) (7)

holds. Thus, if we could prove that the recoverability of C(S) in terms of Θ∗(RN , R)
holds, viz.

∀S ∈ K : C(S) := G(S, R) = ∩M(S, Q) over all Q ∈ Θ∗(RN , R) (8)

holds, it would follow from (7) that the recoverability of C(S) in terms of Θ(RN , R)
must hold a fortiori . However, the recoverability property (8) is not true in general, as
we can easily check in terms of the Example 2 and Example 3 in Section 5. Plausible
and desirable though it may look, the recoverability of the Bergsonian social choice in
terms of the maximisation of each and every Paretian quasi-ordering is a target which is
unattainable in general.7

7This is not to deny the possibility that some necessary and sufficient conditions can be identified
for the recoverability property in terms of Θ∗(RN , R) to hold. For example, if the set of Pareto non-
comparable pairs consists of only two pairs, we have succeeded in identifying the set of necessary and
sufficient conditions for the recoverability property in terms of Θ∗(RN , R) to hold. Even in this simple
case, however, the necessary and sufficient conditions in question are fairly complicated, and the proof
of the recoverability property is rather involved.
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5 Proof and Counter-Examples

5.1. Proof of the Recoverability Theorem
The ‘only if’ part being obviously true, we have only to prove the ‘if’ part by reductio ad
absurdum. Suppose to the contrary that there is an S ∈ K and an x ∈ ∩M(S, Q) over
all Q ∈ Θ(RN , R) such that x /∈ G(S, R), which means that

∃z ∈ S : (z, x) ∈ P (R) (9)

and
∀Q ∈ Θ(RN , R) : (z, x) /∈ P (Q), (10)

where use is made of the completeness of R. Thus:

∀Q ∈ Θ(RN , R) : Q ⊂⊂ R and P (Q) ⊂⊂ P (R). (11)

There are two cases to be considered.

Case 1: Q0 ∪ {(z, x)} ⊂⊂ R for some Q0 ∈ Θ(RN , R).

Case 2: Q ∪ {(z, x)} = R for all Q ∈ Θ(RN , R).

It should be clear that Case 2 implies that Θ(RN , R) is in fact a singleton set, say
{Q∗}, where Q∗ ∪{(z, x)} = R. However, it follows from the definition of Θ(RN , R) and
the assumption NT that there exist at least two distinct pairs, say {a, b} and {u, v}, such
that, if we denote the relation between a and b (resp. u and v) in accordance with R by
(a ∗ b) (resp. (u ∗ v)), Q1 = ρ(RN) ∪ {(a ∗ b)} and Q2 = ρ(RN) ∪ {(u ∗ v)} must both
belong to Θ(RN , R), which is a contradiction.

Consider now Case 1 and define

Q∗∗ = Q0 ∪ {(z, x)}. (12)

Our task is to verify that Q∗∗ ∈ Θ(RN , R). Since Q∗∗ ⊂⊂ R holds by definition, we
have only to check that ρ(RN) ∈ Σ(Q∗∗)\{Q∗∗} and Q∗∗ ∈ Σ(R). Note that ρ(RN) ∈
Σ(Q0)\{Q0} and (12) imply that ρ(RN) ⊂ Q0 ⊂⊂ Q∗∗. To show that P (ρ(RN)) ⊂
P (Q∗∗), observe that (a, b) ∈ P (Q∗∗) if and only if either

(a, b) = (z, x), (b, a) /∈ Q0 and (b, a) 6= (z, x) (13)

or
(a, b) ∈ P (Q0) and (b, a) 6= (z, x) (14)

holds, where use is made of (12). Suppose (a, b) ∈ P (ρ(RN)). It follows from ρ(RN) ∈
Σ(Q0) that (a, b) ∈ P (Q0), which implies that (b, a) /∈ Q0. If it happens to be the case
that (a, b) = (z, x), then (b, a) = (x, z) 6= (z, x) holds, since otherwise (a, b) = (x, z) ∈
P (Q0) ⊂ P (R) in contradiction with (z, x) ∈ P (R). Thus (13) must be the case, hence
(a, b) ∈ P (Q∗∗) obtains. On the other hand, if (a, b) 6= (z, x), then we cannot have

42



(b, a) = (z, x), since otherwise (a, b) ∈ P (ρ(RN)) ⊂ P (Q0) will have to imply (x, z) ∈
P (Q0) ⊂ P (R), a contradiction. Hence (14) must hold, so that ρ(RN) ∈ Σ(Q∗∗)\{Q∗∗}.

To verify that Q∗∗ ∈ Σ(R), note that Q0 ∈ Σ(R), (z, x) ∈ P (R) and (12) imply
Q∗∗ ⊂ R. If (a, b) ∈ P (Q∗∗), either (13) or (14) holds. If (13) is the case, (9) implies that
(a, b) ∈ P (R). On the other hand, (14) and Q0 ∈ Σ(R) imply (a, b) ∈ P (Q0) ⊂ P (R).
Thus Q∗∗ ∈ Σ(R) must be true.

We have thus shown that Q∗∗ ∈ Θ(RN , R). However, since (z, x) ∈ P (Q∗∗) by
definition, this contradicts (10) for this Q∗∗. Therefore, we obtain

∀S ∈ K : C(S) := G(S, R) ⊃ ∩M(S, Q) over all Q ∈ Θ(RN , R), (15)

which completes the proof of (5) in view of (4). ‖

5.2. Counter-Examples
Example 2 : Let S = X = {x, y, z}, N = {1, 2}, and let a profile RN = (R1, R2)

of individual preference orderings be defined by R1 = ∆(X) ∪ {(z, x), (x, y), (z, y)} and
R2 = ∆(X)∪{(x, y), (y, z), (x, z)}. Clearly, the Pareto quasi-ordering is given in this case
by ρ(RN) = ∆(X) ∪ {(x, y)}. If a Paretian Bergson-Samuelson social welfare ordering
R is specified by R = ∆(X) ∪ {(z, x), (x, y), (z, y)}, Θ(RN , R) consists of two relations
Q1 and Q2 such that Q1 = ρ(RN) ∪ {(z, y)} and Q2 = ρ(RN) ∪ {(z, x)}. It follows that
we have G(S, R) = {z} = M(S, Q1) ∩M(S,Q2), vindicating the recoverability theorem
in terms of Θ(RN , R). Note, however, that Θ∗(RN , R) consists only of Q1, because Q2

will have to be expanded so as to include {(z, y)} in order for it to satisfy the axiom of
transitivity. However, doing this cannot but imply that the expanded Q2 must coincide
with R. Then we have G(S,R) = {z} ⊂⊂ {x, z} = M(S, Q1), so that the recoverability
property does not hold in terms of Θ∗(RN , R). ‖

Example 3 : Let S = X = {x, y, z, w}, N = {1, 2}, and let a profile RN = (R1, R2) of
individual preference orderings be defined by R1 = ∆(X)∪{(x,w), (w, y), (y, z), (x, y), (x,
z), (w, z)} and R2 = ∆(X) ∪ {(w, x), (x, z), (z, y), (w, z), (w, y), (x, y)}. Clearly, the
Pareto quasi-ordering is given in this case by ρ(RN) = ∆(X) ∪ {(x, y), (w, y), (w, z)}.
If a Paretian Bergson-Samuelson social welfare ordering R is specified by R = ∆(X) ∪
{(w, z), (z, x), (x, y), (w, x), (w, y), (z, y)}, Θ∗(RN , R) consists of the following three rela-
tions: Q1, Q2 and Q3 such that Q1 = ρ(RN) ∪ {(w, x)} and Q2 = ρ(RN) ∪ {(z, y)} and
Q3 = ρ(RN) ∪ {(w, x), (z, y)}, so that G({x, z}, R) = {z} ⊂⊂ {x, z} = M({x, z}, Q1) ∩
M({x, z}, Q2)∩M({x, z}, Q3). Thus, the recoverability property does not hold in terms
of Θ∗(RN , R). ‖

6 Concluding Remarks

To assert the logical impeccability of the research programme of the new welfare eco-
nomics is one thing, and to assert the actual implementability of the logically impeccable
programme is quite another. This chapter was mainly concerned with accomplishing

43



the first task by establishing the recoverability of the Pareto-compatible Bergsonian so-
cial choice through the maximisation of the Pareto-inclusive test relations. However, we
could identify en route a condition to be satisfied by the eligible Pareto-inclusive test
relations. The condition in question is the logical requirement of consistency, which was
first introduced by Suzumura [24; 27, pp. 8-11], and it enables us to check whether or not
various test relations proposed in the literature are capable of implementing the research
programme of the new welfare economics.
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u(x)

u(y′)

u(y)

u(z)

u(z′)

u(x′)

Figure 3. Inconsistency of the Kaldor, Hicks and Scitovsky Compensation Principles

Note: The curves depicted in this figure describe the utility possibility frontiers corresponding
to various situations. Note that, according to each of the Kaldor, Hicks and Scitovsky principles,
y is better than x, z is better than y, but x is better than z.

Take, for example, the hypothetical compensation principles proposed by Kaldor [12],
Hicks [11], Scitovsky [19] and Samuelson [18]. The condition of consistency alone is suffi-
cient to disqualify the Kaldor compensation principle, the Hicks compensation principle
and the Scitovsky compensation principle as workable guideposts for final rational social
choice. Although the failure of these principles is well vindicated by Arrow [1, Chapter
IV], Chipman and Moore [6], Graaff [8, Chapters IV and V] and Suzumura [26; 28; 29],
among others, the essence of their failure can be neatly illustrated in Figure 3.8 The three

8The piecemeal welfare criteria à la Little [13; 14] and Mishan [16], which pay due attention to dis-
tributional equity considerations along with allocative efficiency considerations, can improve the logical
score of the Kaldor-Hicks compensationist approach, but this progress is somewhat vacuous in the sense
that the crucial value judgements on distributional equity are left completely unspecified. See Arrow
[2, p.927], according to whom “[t]he hard problem ... arises at the point where Little and everyone else
stops. It is all very well to say that the effects of a proposed change on income distribution must be
taken into account in deciding on the desirability of the change: but how do we describe a distribution of
real income? Admittedly, the choice between two income distributions is the result of a value judgement;
but how do we even formulate such judgement?” See also Chipman and Moore [6] and Suzumura [26;
29], among others, for critical examination of this line of thought.
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curves in this figure describe the utility possibility frontiers corresponding to three social
states x, y and z. According to each of the Kaldor, Hicks and Scitovsky compensation
principles, y is better than x, x is better than z, and z is better than y. Thus, these
principles generate a test relation which is not acyclic, hence not consistent, so that these
compensation principles are incapable of implementing the research programme of the
new welfare economics.

0

u2

u1

u(z)

u(y)

u(x)
u(w)

Figure 4. Incompatibility between the Pareto Principle and the Samuelson Compensation
Principle

Note: The curves depicted in this figure describe the utility possibility frontiers corresponding
to various situations. If the Samuelson compensation principle is an extension of the Pareto
principle x is judged socially better than y, y is judged socially better than z, z is judged
socially better than w, but w is judged socially better than x.

The verdict on the Samuelson compensation principle, which is defined in terms of
a uniform outward shift of the utility possibility frontiers , is quite different. Indeed,
the Samuelson principle can actually generate a test relation which is transitive, and
hence consistent, but it fails to define a strict extension of the Pareto quasi-ordering
in general.9 This failure is illustrated in Figure 4, which shows that the Samuelson
compensation principle may generate a test relation which cannot be compatible with
the Pareto principle.

How about many interesting proposals in the more recent literature, which tried to
construct some relevant Pareto-inclusive quasi-orderings? To cite just a few salient ex-
amples, the grading principle of justice à la Suppes [23] under the axiom of identity
introduced by Sen [20, p.156] or the principle of acceptance due to Harsanyi [10, p.52],
the partial comparability approach developed by Sen [21] and Fine [7], and some plausible

9See also a recent work by Gravel [9] which shows how restrictive is the class of economies which are
free from this logical difficulty of the Samuelson compensation principle.

45



quasi-orderings introduced by Blackorby and Donaldson [4] immediately suggest them-
selves.10 One may be led to think that an embarrassment of riches is a real possibility
here, but a crucial problem still remains.11 All these proposed quasi-orderings are based
on interpersonal welfare comparisons in one form or the other. In this sense, they are
not in fact in harmony with the informational basis of the new welfare economics.

It seems to us that defining the Pareto-inclusive test relations which can pass the
crucial test of consistency without requiring anything beyond the informational basis
characterised by ordinalism and interpersonal non-comparability is by no means an easy
task.12 This observation should not surprise anybody, however, as “nothing of much
interest can be said on justice without bringing in some interpersonal comparability (Sen
[20, p.150].”

10See also Madden [15].
11It should also be added that the recoverability of the Bergsonian social choice in terms of the

maximisation of the Pareto-inclusive quasi-orderings does not hold in general.
12In the same spirit, one referee pose an interesting question, which reads as follows: “it could be

of interest to look at whether there are any criteria which utilise information similar to that used by
compensation criteria (information about positions being compared and situations that can be reached
through redistribution) that are both anonymous and satisfy the Pareto criterion. A negative answer
would put the final nail into the new welfare economics approach.” This chapter stops short of putting
the final nail into the new welfare economics, but this suggestion is surely interesting to explore.
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Chapter 12
Arrovian Aggregation in Economic

Environments: How Much Should We
Know about Indifference Surfaces?∗

1 Introduction

From Arrow’s celebrated theorem of social choice, it is well known that the aggregation
of individual preferences into a social ordering cannot make the social ranking of any
pair of alternatives depend only on individual preferences over that pair (this is the
famous axiom of Independence of Irrelevant Alternatives). Or, more precisely, it cannot
do so without trespassing basic requirements of unanimity (the Pareto principle) and
anonymity (even in the very weak version of non-dictatorship). This raises the following
question: What additional information about preferences would be needed in order to
make aggregation of preferences possible, and compatible with the basic requirements of
unanimity and anonymity?

In the last decades, the literature on social choice has explored several paths and gave
interesting answers to this question. The main avenue of research has been, after Sen [18]
and d’Aspremont and Gevers [7], the introduction of information about utilities, and it
has been shown that the classical social welfare functions, and less classical ones, could
be obtained with the Arrovian axiomatic method by letting the social preferences take
account of specific kinds of utility information with interpersonal comparability.

In this chapter, we focus on the introduction of additional information about prefer-
ences that is not of the utility sort. In other words, we retain a framework with purely

∗First published in Journal of Economic Theory, Vol.124, 2005, pp.22-44 as a joint paper with M.
Fleurbaey and K. Tadenuma. We thank A. Leroux for a stimulating discussion, A. Trannoy and anony-
mous referees of Journal of Economic Theory for helpful comments, and participants at seminars in
Cergy, Rochester, Waseda and Hitotsubashi, and the 5th International Meeting of the Society for Social
Choice and Welfare in Alicante. Financial supports from the Ministry of Education, Culture, Sports,
Science and Technology of Japan through Grant-in-Aid for Scientific Research No.10045010 (“Economic
Institutions and Social Norms: Evolution and Transformation”) and the 21st Century Center of Excel-
lence Project on the Normative Evaluation and Social Choice of Contemporary Economic Systems are
gratefully acknowledged.
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ordinal and interpersonally non-comparable preferences. The kind of additional informa-
tion that we study is about the shapes of indifference surfaces, and we ask how much
one needs to know about indifference surfaces so as to be able to aggregate individual
preferences while respecting the unanimity and anonymity requirements. The introduc-
tion of this additional information is formulated in terms of weakening Arrow’s axiom of
independence of irrelevant alternatives.

The model adopted here is an economic model, namely, the canonical model of division
of infinitely divisible commodities among a finite set of agents. We choose to study
an economic model rather than the abstract model that is now commonly used in the
theory of social choice1 for two reasons. First, it allows a more fine-grained analysis of
information about preferences, because it makes it sensible to talk about marginal rates of
substitution and other local notions about indifference surfaces. Second, in an economic
model preferences are naturally restricted, and by considering a restricted domain we can
hope to obtain positive results with less information than under unrestricted domain.

Our first extension of informational basis is to take account of marginal rates of
substitution. It turns out that such infinitesimally local information would not be enough
to escape from dictatorship, and we establish an extension of Arrow’s theorem. Then, it
is natural to take account of the portions of indifference surfaces in some finitely sized
neighborhoods of the allocations. Based on this additional information, we can construct
a non-dictatorial aggregation rule or social ordering function, SOF for short, but still
anonymity cannot be attained.

The second direction of extending informational basis focuses on indifference surfaces
within the corresponding “Edgeworth box”. More precisely, for any two allocations, we
define the smallest vector of total resources that makes both allocations feasible, and
take the portion of the indifference surface through each allocation in the region below
the vector. The introduction of this kind of information, however, does not help us avoid
dictatorship.

The third avenue relies on some fixed monotone path from the origin in the consump-
tion space, and focuses on the points of indifference surfaces that belong to this path.
The idea of referring to such a monotone path is due to Pazner and Schmeidler [16], and
may be justified if the path contains relevant benchmark bundles. Making use of this
additional information, and following Pazner and Schmeidler’s [16] contribution, we can
construct a Paretian and anonymous SOF.

Our final, the largest, extension of informational basis is to take whole indifference
surfaces. Given the above result, a Paretian and anonymous SOF can be constructed on
this informational basis.

The motivation for our research builds on many works in recent and less recent liter-
ature. Attempts to construct SOFs and similar objects embodying unanimity and equity
requirements were made by Suzumura [19, 20] and Tadenuma [21]. The idea that infor-
mation about whole indifference surfaces is sufficient, hinted at by Pazner and Schmei-
dler [16] and Maniquet [14], was made more precise in Pazner [15] and was revived by

1Recollect, however, that Arrow’s initial presentations [1; 2] dealt with this economic model of division
of commodities.
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Bossert, Fleurbaey and Van de gaer [4] and Fleurbaey and Maniquet [8, 9] who were able
to construct nicely behaved SOFs on this basis. Campbell and Kelly [5] recently studied
essentially the same issue in an abstract model of social choice, and showed that limited
information about preferences may be enough. However, their model does not have the
rich structure of economic environments, and they focus only on non-dictatorship and do
not study how much information is needed for the stronger requirement of anonymity.

The chapter is organized as follows. Section 2 introduces the framework and the main
notions. Sections 3-5 consider the four types of extensions of the informational basis of
social orderings, and present the results. Section 6 concludes. The appendix contains
some proofs.

2 Basic Definitions and Arrow’s Theorem

The population is fixed. Let N := {1, ..., n} be the set of agents where 2 ≤ n < ∞. There
are ` goods indexed by k = 1, ..., ` where 2 ≤ ` < ∞. Agent i’s consumption bundle is a
vector xi := (xi1, ..., xi`). An allocation is denoted x := (x1, ..., xn). The set of allocations
is Rn`

+ . The set of allocations such that no individual bundle xi is equal to the zero vector
is denoted X. Vector inequalities are denoted as usual: ≥, >, and À.

A preordering is a reflexive and transitive binary relation. Agent i’s preferences are
described by a complete preordering Ri (strict preference Pi, indifference Ii) on R`

+. A
profile of preferences is denoted R := (R1, ..., Rn). LetR be the set of continuous, convex,
and strictly monotonic preferences over R`

+.
A SOF is a mapping R̄ defined on Rn such that, for all R ∈ Rn, R̄(R) is a com-

plete preordering on the set of allocations Rn`
+ . Let P̄ (R) (resp. Ī(R)) denote the strict

preference (resp. indifference) relation associated to R̄(R).
Let π be a bijection on N. For each x ∈ Rn`

+ , define π(x) := (xπ(1), . . . , xπ(n)) ∈ Rn`
+ ,

and for each R ∈ Rn, define π(R) := (Rπ(1), . . . , Rπ(n)) ∈ Rn. Let Π be the set of all
bijections on N . The basic requirements of unanimity and anonymity on which we focus
in this chapter are the following.

Weak Pareto: ∀R ∈ Rn, ∀x, y ∈ Rn`
+ , if ∀i ∈ N, xiPiyi, then xP̄ (R)y.

Anonymity: ∀R ∈ Rn,∀x, y ∈ Rn`
+ , ∀π ∈ Π :

xR̄(R)y ⇔ π(x) R̄(π(R)) π(y).

Concerning the non-dictatorship form of anonymity, we only define here what dicta-
torship means, for convenience. Notice that it has to do only with allocations in X, that
is, without the zero bundle for any agent.

Dictatorial SOF: A SOF R̄ is dictatorial if there exists i0 ∈ N such that:

∀R ∈ Rn,∀x, y ∈ X : xi0Pi0yi0 ⇒ xP̄ (R)y.
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The traditional, Arrovian, version of Independence of Irrelevant Alternatives is:

Independence of Irrelevant Alternatives (IIA): ∀R,R′ ∈ Rn, ∀x, y ∈ Rn`
+ , if ∀i ∈

N , Ri and R′
i agree on {xi, yi}, then R̄(R) and R̄(R′) agree on {x, y}.

IIA requires that the social ranking of any pair of allocations depends only on agents’
binary preferences over that pair. Hence, the informational basis of construction of social
orderings is very restricted.

The version of Arrow’s theorem for the present canonical model of division of com-
modities is due to Bordes and Le Breton [3].

Proposition 1 (Bordes and Le Breton [3]) If a SOF R̄ satisfies Weak Pareto and IIA,
then it is dictatorial.

3 Local Extension of Informational Basis

The IIA axiom can be weakened by strengthening the premise: that is, for any two pref-
erence profiles and any pair of allocations, only when some properties about indifference
surfaces associated with the two allocations coincide in addition to pairwise preferences,
it is required that the social ranking over the two allocations should agree. This amounts
to allowing the SOF to make use of more information about indifference surfaces when
ranking each pair of allocations.

In this chapter, we consider four types of extensions of the informational basis of social
orderings. First, we use information about marginal rates of substitution. Economists
are used to focus on marginal rates of substitution when assessing the efficiency of an
allocation, especially under convexity, since for convex preferences the marginal rates of
substitution determine the half space in which the upper contour set lies. Moreover,
for efficient allocations, the shadow prices enable one to compute the relative implicit
income shares of different agents, thereby potentially providing a relevant measure of
inequalities in the distribution of resources. Therefore, taking account of marginal rates of
substitution is a natural extension of the informational basis of social choice in economic
environments.

Let C(xi, Ri) denote the cone of price vectors that support the upper contour set for
Ri at xi :

C(xi, Ri) := {p ∈ R`|∀y ∈ R`
+, py = pxi ⇒ xiRiy}.

When preferences Ri are strictly monotonic, one has C(xi, Ri) ⊂ R`
++ whenever xi À 0.

IIA except Marginal Rates of Substitution (IIA-MRS): ∀R,R′ ∈ Rn, ∀x, y ∈ Rn`
+ ,

if ∀i ∈ N , Ri and R′
i agree on {xi, yi}, and

C(xi, Ri) = C(xi, R
′
i),

C(yi, Ri) = C(yi, R
′
i),
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then R̄(R) and R̄(R′) agree on {x, y}.
It is clear that IIA implies IIA-MRS. The converse does not hold as an example in

Appendix A.4 shows. It turns out, unfortunately, that weakening IIA into IIA-MRS
cannot alter the dictatorship conclusion of Arrow’s theorem. Introducing information
about marginal rates of substitution, in addition to pairwise preferences, does not make
room for satisfactory SOFs.

Proposition 2 If a SOF R̄ satisfies Weak Pareto and IIA-MRS, then it is dictatorial.

The proof of Proposition 2 is long and is relegated to the appendix, but here we sketch
the main line of the proof. Since IIA implies IIA-MRS, Proposition 2 is a generalization
of the theorem by Bordes and Le Breton [3, Theorem 3]. An essential idea of the proofs
of Arrow-like theorems in economic environments (Kalai, Muller and Satterthwaite [13],
Bordes and Le Breton [3], and others) is as follows: First, we find a “free triple”, that
is, three allocations for which any ranking is possible in each individual’s preferences
satisfying the standard assumptions in economics. By applying Arrow’s theorem for
these three allocations, it can be shown that there exists a “local dictator” for each free
triple. Then, we “connect” free triples in a suitable way to show that these local dictators
must be the same individual.

Turning to IIA-MRS, notice first that for each free triple, IIA-MRS works just as IIA
only in the class of preference profiles for which individuals’ marginal rates of substitution
at the three allocations do not change from one profile to another, and satisfy certain
“supporting conditions”. Invoking Arrow’s theorem, we can only show that there exists
a “local dictator” for each free triple in this much restricted class of preference profiles
(Lemmas A.1 and A.2). The difficulty in the proof of Proposition 2 lies in extending
“local dictatorship” over the class of all preference profiles. This requires much work to
do. See Lemmas A.3 and A.4 in the Appendix.

Inada [12] also considered marginal rates of substitution in an IIA-like axiom, but the
difference from our work is that he looked for a local aggregator of preferences, namely a
mapping defining a social marginal rate of substitution between goods and individuals,
on the basis of individual marginal rates of substitution. Hence, Inada requires that,
for each allocation, social preferences in an infinitely small neighborhood of the allocation
should not change whenever every agent’s marginal rates of substitution at the allocation
remain the same. By contrast, our IIA-MRS requires that, for each pair of allocations,
social preferences over that pair should not change whenever every agent’s marginal rates
of substitution at each of the two allocations remain the same. There is no logical relation
between Inada’s axiom and ours.

Marginal rates of substitution give an infinitesimally local piece of information about
indifference surfaces at given allocations. A natural extension of the informational basis
would be to take account of the indifference surfaces in some finitely sized neighborhoods
of the two allocations. Define, for any given real number ε > 0,

Bε(xi) := {v ∈ R`
+| max

k∈{1,...,`}
|xik − vk| ≤ ε}.
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Define
I(xi, Ri) := {z ∈ R`

+ | z Ii xi}.
The set I(xi, Ri) is called the indifference surface at xi for Ri.

The next axiom is defined for any given ε > 0.

IIA except Indifference Surfaces in ε-Neighborhoods (IIA-ISεN): ∀R,R′ ∈ Rn,
∀x, y ∈ Rn`

+ , if ∀i ∈ N , Ri and R′
i agree on {xi, yi}, and

I(xi, Ri) ∩Bε(xi) = I(xi, R
′
i) ∩Bε(xi),

I(yi, Ri) ∩Bε(yi) = I(yi, R
′
i) ∩Bε(yi),

then R̄(R) and R̄(R′) agree on {x, y}.
It is clear that for any given ε > 0, IIA-MRS implies IIA-ISεN. Notice also that the

larger is the value of ε, the weaker the condition IIA-ISεN becomes.
The next proposition shows that as soon as one switches from IIA-MRS to IIA-ISεN,

the dictatorship result is avoided even if ε is arbitrarily small. However, it remains
impossible to achieve Anonymity even for an arbitrarily large ε.

Proposition 3 For any given ε > 0, there exists a SOF that satisfies Weak Pareto,
IIA-ISεN, and is not dictatorial. However, for any given ε > 0, there exists no SOF that
satisfies Weak Pareto, IIA-ISεN and Anonymity.

Proof. The proof of the impossibility part is in the appendix. Here we prove the pos-
sibility part. Define R̄ as follows: xR̄(R)y if either x1R1y1 and [I(x1, R1) * Bε(0) or
I(y1, R1) * Bε(0)], or x2R2y2 and [I(x1, R1) ⊆ Bε(0) and I(y1, R1) ⊆ Bε(0)]. For brevity,
let Γ (v) denote [I(v,R1) ⊆ Bε(0)]. Weak Pareto and the absence of dictator are straight-
forwardly satisfied. IIA-ISεN is also satisfied because when Γ (x1) and Γ (y1) hold, we
have Bε(0) ⊆ Bε(x1) ∩ Bε(y1), and therefore Γ (x1) and Γ (y1) remain true if the indif-
ference surfaces are kept fixed on Bε(x1) and Bε(y1). It remains to check transitivity
of R̄(R). First, note the following property: If Γ (v) holds and vR1v

′, then Γ (v′) also
holds. Assume that there exist x, y, z ∈ Rn`

+ such that xR̄(R)yR̄(R)zP̄ (R)x. If Γ (x1),
Γ (y1) and Γ (z1) all hold, this is impossible because one should have x2R2y2R2z2P2x2. If
only one of the three conditions Γ (x1), Γ (y1), Γ (z1) is satisfied, it is similarly impossible
because one should have x1R1y1R1z1P1x1. Assume Γ (x1) and Γ (y1) hold, but not Γ (z1).
Then, yR̄(R)zP̄ (R)x requires y1R1z1P1x1, which implies Γ (z1), a contradiction. Assume
Γ (x1) and Γ (z1) hold, but not Γ (y1). Then, xR̄(R)yR̄(R)z requires x1R1y1R1z1, which
implies Γ (y1), a contradiction. Assume Γ (y1) and Γ (z1) hold, but not Γ (x1). Then,
zP̄ (R)xR̄(R)y requires z1P1x1R1y1, which implies Γ (x1), a contradiction.

4 Extension of Informational Basis to “Edgeworth

Boxes”

Our second type of extension of informational basis is to focus on the portions of indiffer-
ence surfaces, associated with each pair of allocations, that lie within the corresponding
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“Edgeworth box”: namely, the set of bundles that are achievable by redistributing the
two allocations under consideration. However, for a given pair of allocations, the two
allocations may need different amounts of total resources to be feasible. Therefore we
need to introduce the following notions. For each good k ∈ {1, ..., `}, define

ωk(x, y) := max {
∑
i∈N

xik,
∑
i∈N

yik}.

Let ω(x, y) := (ω1(x, y), ..., ω`(x, y)). The vector ω(x, y) ∈ R`
+ represents the smallest

amount of total resources that makes two allocations x and y feasible. Fig. 1 illustrates
the construction of ω(x, y). Then, define

Ω(x, y) :=
{
z ∈ R`

+ | z ≤ ω(x, y)
}

.

The set Ω(x, y) ⊂ R`
+ is the set of consumption bundles that are feasible with ω(x, y). The

following axiom captures the idea that the ranking of any two allocations should depend
only on the indifference surfaces over the region satisfying the corresponding feasibility
constraint.

IIA except Indifference Surfaces over Feasible Allocations (IIA-ISFA): ∀R,R′ ∈
Rn, ∀x, y ∈ Rn`

+ , if ∀i ∈ N ,

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
′
i) ∩ Ω(x, y),

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
′
i) ∩ Ω(x, y),

then R̄(R) and R̄(R′) agree on {x, y}.

IIA-ISFA
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-

good 2

0

rx2
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good 2
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Figure 1: Relevant Portions of Indifference Surfaces under IIA-ISFA and IIA-ISεN
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The left figure in Figure 1 illustrates the relevant portions of indifference surfaces
under IIA-ISFA, which are indicated by thick curves, while the right figure shows the
relevant parts under IIA-ISεN. One can see that, in general, there is no inclusion relation
between the relevant portions of indifference surfaces under IIA-ISFA and those under
IIA-ISεN. Hence, there is no logical relation between the axioms IIA-ISFA and IIA-ISεN.
See counterexamples in Appendix A.4.

The introduction of information about indifference surfaces over the region satisfying
the corresponding feasibility constraint, however, cannot help us avoid a dictatorial SOF.

Proposition 4 If a SOF satisfies Weak Pareto and IIA-ISFA, then it is dictatorial.

The proof relies on the following lemmas. First, we define a weak form of IIA:

Weak Independence of Irrelevant Alternatives (WIIA): ∀R,R′ ∈ Rn, ∀x, y ∈ X,
if ∀i ∈ N , Ri and R′

i agree on {xi, yi}, and for no i, xi Ii yi, then R̄(R) and R̄(R′) agree
on {x, y}.

A key lemma to prove Proposition 4 is the following:

Lemma 1 If a SOF R̄ satisfies Weak Pareto and IIA-ISFA, then it satisfies WIIA.

The proof of this lemma is long and relegated in the appendix. We also define a weak
form of dictatorship: Given a SOF R̄, Y ⊆ X and R′ ⊆ Rn, we say that agent i0 ∈ N is
a quasi-dictator for R̄ over (Y,R′) if for all x, y ∈ Y , and all R ∈ R′, whenever xi0Pi0yi0

and there is no i ∈ N with xiIiyi, we have xP̄ (R)y.

Quasi-Dictatorial SOF: A SOF R̄ is quasi-dictatorial if there exists a quasi-dictator
i0 ∈ N for R̄ over (X,Rn).

Lemma 2 If a SOF R̄ satisfies Weak Pareto and WIIA, then it is quasi-dictatorial.

Proof. Let R̄ be a SOF that satisfies Weak Pareto and WIIA. By an adaptation of a
standard proof of Arrow’s theorem (for instance, Sen [18]), we can show that for every
free triple Y ⊂ X, there exists a quasi-dictator over (Y,Rn). Then, a direct application
of Bordes and Le Breton [3] establishes quasi-dictatorship of R̄.

It is interesting that, in our economic environments, quasi-dictatorship is equivalent
to dictatorship as the next lemma shows.

Lemma 3 If a SOF R̄ is quasi-dictatorial, then it is dictatorial.

Proof. Let R̄ be a quasi-dictatorial SOF. Let x, y ∈ X and R ∈ Rn be such that
xi0Pi0yi0 . By continuity and strict monotonicity of preferences, there exists x′ ∈ X such
that xi0Pi0x

′
i0
Pi0yi0 and for all i ∈ N, either xiPix

′
iPiyi or yiRixiPix

′
i. Since R̄ is quasi-

dictatorial, it follows that xP̄ (R)x′ and x′P̄ (R)y. By transitivity, xP̄ (R)y.
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Given these lemmas, the proof of Proposition 4 is straightforward.

Proof of Proposition 4: Let R̄ be a SOF that satisfies Weak Pareto and IIA-ISFA. By
Lemma 1, R̄ satisfies WIIA. Then, by Lemmas 2 and 3, R̄ is dictatorial.

One may define a weaker axiom than IIA-ISFA by considering a radial expansion of
the corresponding “Edgeworth box”, namely λΩ(x, y) for a given λ ≥ 1, where λ can
be arbitrarily large. With this version, however, the same impossibility still holds as
Proposition 4.

5 Extension of Informational Basis with a Monotone

Path

The previous sections have shown that non-local information about indifference surfaces
is needed to construct a satisfactory SOF. This does not mean, however, that a lot of
information is needed. In this section we show that knowing one point in each indifference
surface may be enough.

Our third way of extending information about indifference surfaces is to rely on a
path

Λω0 := {λω0 ∈ R`
++ | λ ∈ R+},

where ω0 ∈ R`
++ is fixed, and to focus on the point of each indifference surface that

belongs to this path. The idea of referring to such a path is due to Pazner and Schmeidler
[16], and may be justified if the path contains relevant benchmark bundles. Although
the choice of ω0 is not discussed here, it need not be arbitrary. For instance, one may
imagine that it could reflect an appropriate equity notion, or it could be the bundle of
the total available resources.

IIA except Indifference Surfaces on Path ω0 (IIA-ISPω0): ∀R,R′ ∈ Rn, ∀x, y ∈
Rn`

+ , if ∀i ∈ N ,

I(xi, Ri) ∩ Λω0 = I(xi, R
′
i) ∩ Λω0 ,

I(yi, Ri) ∩ Λω0 = I(yi, R
′
i) ∩ Λω0 ,

then R̄(R) and R̄(R′) agree on {x, y}.
Following Pazner and Schmeidler’s [16] contribution, we can derive the next result,

which means that not much information is needed to have an anonymous SOF if only we
are prepared to accept an externally specified reference bundle.

Proposition 5 For any given ω0 ∈ R`
++, there exists a SOF that satisfies Weak Pareto,

IIA-ISPω0 and Anonymity.
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Proof. For each i ∈ N , each Ri ∈ R and each xi ∈ R`
+, let α(xi, Ri) ∈ R+ be the scalar

such that α(xi, Ri)ω0Iixi. By continuity and strict monotonicity of preferences, α(xi, Ri)
always exists uniquely. Let R̄ be defined by:

xR̄(R)y ⇔ min
i∈N

α(xi, Ri) ≥ min
i∈N

α(yi, Ri).

This SOF clearly satisfies Weak Pareto and Anonymity. It also satisfies IIA-ISPω0 be-
cause whenever I(xi, Ri) ∩ Λω0 = I(xi, R

′
i) ∩ Λω0 , we have α(xi, Ri) = α(xi, R

′
i).

By relying on the leximin criterion rather than the maximin for the SOF defined in the
above proof, we could have the Strong Pareto property as well: ∀x, y ∈ Rn`

+ ,∀R ∈ Rn

if ∀i ∈ N, xiRiyi, then xR̄(R)y and if, in addition, ∃i ∈ N, xiPiyi, then xP̄ (R)y.
The final extension of informational basis that we consider is to introduce whole

indifference surfaces. This condition was already introduced and studied by Hansson [11]
in the abstract model of social choice, who showed that the Borda rule, which does not
satisfy the Arrow IIA condition, satisfies this constrained variant thereof. Pazner [15]
also proposed it, in a study of social choice in economic environments.

IIA except Whole Indifference Surfaces (IIA-WIS): ∀R,R′ ∈ Rn, ∀x, y ∈ Rn`
+ , if

∀i ∈ N ,

I(xi, Ri) = I(xi, R
′
i),

I(yi, Ri) = I(yi, R
′
i),

then R̄(R) and R̄(R′) agree on {x, y}.

Since IIA-ISPω0 (as well as every other IIA type axiom introduced so far) implies
IIA-WIS, we have the following corollary.

Corollary 1 There exists a SOF that satisfies Weak Pareto, IIA-WIS and Anonymity.

There are many examples of SOFs satisfying Weak Pareto, IIA-WIS and Anonymity.
Thus, in addition to these three axioms, we may add other requirements embodying
various equity principles. Notice that Strong Pareto and Anonymity already entail a
version of the Suppes grading principle: for all R ∈ Rn, all x, y, if there are i, j such
that Ri = Rj, xiPiyj and xjPiyi, and for h 6= i, j, xh = yh, then xP̄ (R)y. We can also
construct SOFs satisfying Strong Pareto, IIA-WIS (or IIA-ISPω0), Anonymity and the
following version of the Hammond equity axiom (Hammond [10]): for all R ∈ Rn, and
all x, y ∈ Rn`

+ , if there are i, j such that Ri = Rj, yiPixiPixjPiyj, and for all h 6= i, j,
xh = yh, then xP̄ (R)y.

Let us summarize in Figure 2 the various IIA type axioms that we have introduced,
and the main results in this chapter. The arrows indicate logical relations between the
axioms. Weaker axioms allow SOFs to depend on more information about indifference
surfaces. In the appendix we show that all the implications are strict (the converse rela-
tions do not hold). The dotted lines in the figure indicate borderlines between possibility
and impossibility, under Weak Pareto, of Non-Dictatorship and of Anonymity.
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Figure 2: Various IIA Axioms and Summary of the Main Results

6 Conclusion

The construction of a non-dictatorial Arrovian SOF in a framework with purely ordinal,
interpersonally non-comparable preferences requires information about the shape of in-
difference surfaces that goes well beyond infinitesimally local data such as marginal rates
of substitution or data within the corresponding “Edgeworth box”. On the basis of in-
formation in some finitely sized neighborhoods, one can construct a non-dictatorial SOF,
but still cannot have an anonymous one. Only substantially non-local information about
indifference surfaces enables one to construct a Paretian and anonymous SOF. These
are the main messages of this chapter, in which we proved two extensions of Arrow’s
impossibility theorem, and several possibility results. We hope that this chapter, more
broadly, contributes to clarifying the informational foundations in the theory of social
choice.

There are limits to our work which may be noticed here, and call for further research.
First, we study a particular economic model, and it would be worth analyzing the same
issues in other models such as the standard abstract model of social choice or other
economic models, in particular models with public goods (the case of consumption ex-
ternalities in our model could also be subsumed under the case of public goods). Second,
the information about indifference surfaces is a complex set of objects, and our analysis
is far from being exhaustive on the pieces of data which can be extracted from this set.
We have focussed on what seemed to us the most natural parts of indifference surfaces
to which one may want to refer in social evaluation of allocations, namely, the marginal
rates of substitution, the Edgeworth box (bundles which are achievable by redistributing
the considered allocations), and reference rays. But there may be other ways of consider-
ing indifference surfaces. For instance, it would be nice to have a measure of the degree
to which a given piece of information is local, and the connection between this work
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and topological social choice (e.g. Chichilnisky [6]) might be worth exploring. Third,
there may be other kinds of interesting additional information. For instance, Roberts
[17] considered introducing information about utilities and about non-local preferences
at the same time, and was able to characterize the Nash social welfare function on this
basis. There certainly are many avenues of research along these lines. The purpose of
this chapter would be well-served if it could open the gate towards these enticing avenues.

Appendix

A.1 Proof of Proposition 2

The proof of Proposition 2 relies on the following lemmas.
Let Y ⊂ X be a given finite subset of X. Let i ∈ N be given. Define Yi := {yi ∈

R`
+|∃y−i ∈ R(n−1)`

+ , (yi, y−i) ∈ Y }. Let Q denote the set of convex cones in R`
++. For each

yi ∈ Yi, let Q(yi) ∈ Q be given. We say that the set Yi satisfies the supporting condition
with respect to {Q(yi)|yi ∈ Yi} if for all yi ∈ Yi, all q ∈ Q(yi), and all y′i ∈ Yi with y′i 6= yi,
q · yi < q · y′i. Define

R(Yi, {Q(yi) | yi ∈ Yi}) := {Ri ∈ R | ∀yi ∈ Yi, C(yi, Ri) = Q(yi)}.

The set of all complete preorderings on Yi is denoted by O(Yi). For all Ri ∈ R, Ri|Yi

denotes the restriction of Ri on Yi. Namely, Ri|Yi
is the complete preordering on Yi such

that for all xi, yi ∈ Yi, xi Ri|Yi
yi ⇔ xi Ri yi. For allR′⊂ R, letR′|Yi

:= {Ri|Yi
| Ri ∈ R′}.

For all xi ∈ X and all Ri ∈ R, let U(xi, Ri) := {x′i ∈ X | x′i Ri xi} denote the (closed)
upper contour set of xi for Ri.

Lemma A.1 If a finite set Yi ⊂ R`
+ satisfies the supporting condition with respect to

{Q(yi)|yi ∈ Yi}, then R(Yi, {Q(yi)|yi ∈ Yi})|Yi
= O(Yi).

Proof. We have only to show that O(Yi) ⊆ R(Yi, {Q(yi)|yi ∈ Yi})|Yi
. Let R′ ∈ O(Yi)

be any preordering on Yi. Construct a complete preordering Ri ∈ R so that the upper
contour set of each yi ∈ Yi is defined as follows. Let xi ∈ Yi be such that for all yi ∈
Yi, yiR

′
ixi. Define Y 1

i := {yi ∈ Yi|yiI
′
ixi}. For each a ∈ R`

+ and each q ∈ R`
++, define

H(a, q) := {b ∈ R`
+|q · b ≥ q · a}. Let

U(xi, Ri) :=
⋂

yi∈Y 1
i


 ⋂

q∈Q(yi)

H(yi, q)




Let I(xi, Ri) be the boundary of U(xi, Ri). Clearly, for all yi ∈ Y 1
i , C(yi, Ri) = Q(yi).

We also have that, for all yi ∈ Yi\Y 1
i , and for all x′i ∈ I(xi, Ri), yiPix

′
i. Given δ > 0, let

(1 + δ)U(xi, Ri) := {x′i ∈ R`
+|∃ai ∈ U(xi, Ri), x

′
i = (1 + δ)ai}, and let (1 + δ)I(xi, Ri) be

the boundary of (1 + δ)U(xi, Ri). For sufficiently small δ, we have that for all yi ∈ Yi\Y 1
i
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and all x′i ∈ (1 + δ)I(xi, Ri), yiPix
′
i by continuity of preferences. Let zi ∈ Yi\Y 1

i be such
that for all yi ∈ Yi\Y 1

i , yiR
′
izi. Define Y 2

i := {yi ∈ Yi\Y 1
i |yiI

′
izi}. Let

U(zi, Ri) := (1 + δ)U(xi, Ri)
⋂


 ⋂

yi∈Y 2
i


 ⋂

q∈Q(yi)

H(yi, q)







Let I(zi, Ri) be the boundary of U(zi, Ri). By definition, for all yi ∈ Y 2
i , C(yi, Ri) = Q(yi).

We have that, for all yi ∈ Yi\ (Y 1
i ∪ Y 2

i ) and all x′i ∈ I(zi, Ri), yiPix
′
i. Similarly we

can construct the upper contour set of each yi ∈ Yi\ (Y 1
i ∪ Y 2

i ) . By its construction,
Ri ∈ R(Yi, {Q(yi)|yi ∈ Yi}) and Ri|Yi

= R′. Thus, R′ ∈ R(Yi, {Q(yi)|yi ∈ Yi})|Yi
.

Let R̄ be a SOF. Let Y ⊆ X and R′ ⊆ Rn be given. We say that agent i0 ∈ N is
a local dictator for R̄ over (Y,R′) if, for all x, y ∈ Y and all R ∈ R′, xi0Pi0yi0 implies
xP̄ (R)y.

Given a set A, let |A| denote the cardinality of A.

Lemma A.2 Let R̄ be a SOF satisfying Weak Pareto and IIA-MRS. Let Y ⊂ X be a
finite subset of X such that |Y | ≥ 3. Suppose that for all i ∈ N , Yi satisfies the supporting
condition with respect to {Q(yi)|yi ∈ Yi}. Then, there exists a local dictator i0 ∈ N for
R̄ over (Y,

∏
i∈N R(Yi, {Q(yi)|yi ∈ Yi})).

Proof. For all R,R′ ∈ ∏
i∈N R(Yi, {Q(yi)|yi ∈ Yi}), all y ∈ Y, and all i ∈ N, C(yi, Ri) =

C(yi, R
′
i). Since R̄ satisfies IIA-MRS, we have that, for all x, y ∈ Y, and all R,R′ ∈∏

i∈N R(Yi, {Q(yi)| yi ∈ Yi}), if Ri and R′
i agree on {xi, yi} for all i ∈ N , then R̄(R) and

R̄(R′) agree on {x, y}. By Lemma A.1, for all i ∈ N,R(Yi, {Q(yi)|yi ∈ Yi})|Yi
= O(Yi).

Hence, by Arrow’s Theorem, there exists a local dictator for R̄ over (Y,
∏

i∈N R(Yi, {Q(yi)|yi

∈ Yi})).

We say that a subset Y of X is free for agent i if R|Yi
= O(Yi). It is free if it is free

for all i ∈ N. If Y contains two elements, it is a free pair. If Y contains three elements,
it is a free triple. Note that a set {x, y} is a free pair for i ∈ N if and only if, for some
k, k′ ∈ {1, . . . , `}, xik > yik and yik′ > xik′ . Given two consumption bundles xi, yi ∈ R`

+,
define xi ∧ yi ∈ R`

+ as (xi ∧ yi)k = min{xik, yik} for all k ∈ {1, . . . , `}.

Lemma A.3 Let R̄ be a SOF satisfying Weak Pareto and IIA-MRS. If {x, y} ⊂ X is a
free pair, then there exists a local dictator for R̄ over ({x, y},Rn).

Proof. Let R̄ be a SOF satisfying Weak Pareto and IIA-MRS. Let {x, y} ⊂ X be a free
pair. Let

K1 := {k ∈ {1, . . . , `} | xik > yik}
K2 := {k ∈ {1, . . . , `} | xik < yik}

Since {x, y} is a free pair, K1, K2 6= ∅.
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Step 1 : For each i ∈ N , we define two consumption bundles zi, wi ∈ X as follows:

zi := xi ∧ yi +
1

2

[
2

3
(xi − xi ∧ yi) +

1

3
(yi − xi ∧ yi)

]
(1)

wi := xi ∧ yi +
1

2

[
1

3
(xi − xi ∧ yi) +

2

3
(yi − xi ∧ yi)

]
(2)

6good 2

-
good 10

q
xi ∧ yi

qyi

q
bi

qvi

q
xi

qwiqzi

qti

S
S

S
S

S
S

S
S

S
S

½½>
C(xi, R

0
i )

Figure 3: Proof of Lemma A.3

Figure 3 illustrates the bundles xi, yi, xi∧yi, zi, wi, and also bi, vi, ti, which are defined
in the next step. Let q ∈ R`

++. Then, q · yi < q · wi if and only if

2

3

∑

k∈K2

qk(yik − xik) <
1

6

∑

k∈K1

qk(xik − yik) (3)

Since K1 6= ∅, the right-hand-side of (3) can be arbitrarily large as (qk)k∈K1 become
large, (qk)k∈K2 being constant. Hence, there exists a price vector q(yi) ∈ R`

++ that
satisfies inequality (3). With some calculations, it can be shown that q(yi) · yi < q(yi) · zi

and q(yi) · yi < q(yi) · xi.
Similarly, for each a ∈ {xi, zi, wi}, we can find a price vector q(a) ∈ R`

++ such that, for
all a′ ∈ {xi, zi, wi, yi} with a′ 6= a, q(a) · a < q(a) · a′. Hence, the set Y 0

i = {xi, zi, wi, yi}
satisfies the supporting condition with respect to {q(xi), q(zi), q(wi), q(yi)}.2

2With a slight abuse of notation, we write q(·) for Q(·) = {αq(·) | α > 0}.
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Let z := (zi)i∈N and w := (wi)i∈N . Let Y 0 := {x, z, w, y}. By Lemma A.2, there
exists a local dictator i0 ∈ N for R̄ over (Y 0,

∏
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)})).
Step 2: We will show that agent i0 is a local dictator for R̄ over ({x, y},Rn).

Suppose, on the contrary, that there exists a preference profile R0 ∈ Rn such that
(i) xi0P

0
i0
yi0 and yR̄(R0)x or (ii) yi0P

0
i0
xi0 and xR̄(R0)y. Without loss of generality,

suppose that (i) holds. Let Y 1 := {z, w, y}. Since agent i0 is the local dictator for R̄
over (Y 0,

∏
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)})), he is also the local dictator for R̄ over
(Y 1,

∏
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)})). (Otherwise, by Lemma A.2, there exists a local
dictator j 6= i0 for R̄ over (Y 1,

∏
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)})), and we can construct a
preference profile R ∈∏

i∈N R(Y 0
i , {q(xi), q(zi), q(wi), q(yi)})⊂

∏
i∈N R(Y 1

i , {q(zi), q(wi),
q(yi)}) such that zi0Pi0wi0 and wjPjzj. Hence we must have zP̄ (R)w and wP̄ (R)z, which
is a contradiction.)

We define two allocations v, t ∈ X in the following steps. Let i ∈ N . First, define
bi ∈ R`

+ as follows: If, for all q ∈ C(xi, R
0
i ), q · (yi − xi) ≥ 0, then let bi := yi. If,

for some q ∈ C(xi, R
0
i ), q · (yi − xi) < 0, then let θ > 0 be a positive number such

that, for all q ∈ C(xi, R
0
i ), q · [yi + θ(yi − xi ∧ yi)− xi] > 0. Since q ∈ R`

++ by strict
monotonicity of preferences, and yi − xi ∧ yi > 0, such a number θ exists. Then, define
bi := yi + θ(yi−xi∧ yi). By definition, bi > yi, and, for all q ∈ C(xi, R

0
i ), q · (bi−xi) > 0.

Define
vi := bi + 2(bi − xi ∧ yi).

Then, vi > bi > yi, and, for all q ∈ C(xi, R
0
i ), q · (vi − xi) > 0.

Next, define

ti := xi ∧ yi +
1

2

[
2

3
(vi − xi ∧ yi) +

1

3
(wi − xi ∧ yi)

]
.

Then,

ti = bi +
1

6
(wi − xi ∧ yi) > bi

and, for all q ∈ C(xi, R
0
i ), q · xi < q · ti.

As in Step 1, we can find price vectors q(vi), q(ti) ∈ R`
++ such that q(vi) · vi < q(vi) ·a

for all a ∈ {xi, zi, wi, ti}, and q(ti) · ti < q(ti) · a for all a ∈ {xi, zi, wi, vi}.
On the other hand, because vi > yi and ti > yi, we have that q(zi) · zi < q(zi) · a for

all a ∈ {ti, vi}, and q(wi) · wi < q(wi) · a for all a ∈ {ti, vi}.
So far we have shown that

(i) the set Y 2
i : = {xi, ti, vi} satisfies the supporting condition with respect to {C(xi, R

0
i ),

q(ti), q(vi)}.
(ii) the set Y 3

i : = {zi, wi, ti, vi} satisfies the supporting condition with respect to {q(zi),
q(wi), q(ti), q(vi)}.

Let v := (vi)i∈N and t := (ti)i∈N . Let Y 2 := {x, t, v} and Y 3 := {z, w, t, v}. By
Lemma A.2, there exist a local dictator i1 ∈ N for R̄ over (Y 2,

∏
i∈N R(Y 2

i , {C(xi, R
0
i ), q(ti),
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q(vi)})), and a local dictator i2 ∈ N for R̄ over (Y 3,
∏

i∈N R(Y 3
i , {q(zi), q(wi), q(ti), q(vi)})).

Recall that agent i0 ∈ N is the local dictator for R̄ over (Y 1,
∏

i∈N R(Y 1
i , {q(zi), q(wi),

q(yi)})). Let R1 ∈ Rn be a preference profile such that for all i ∈ N , C(xi, R
1
i ) =

C(xi, R
0
i ), and for all ai ∈ {ti, vi, wi, yi, zi}, C(ai, R

1
i ) = {q(ai)}, and such that

xi0P
1
i0
zi0P

1
i0
wi0P

1
i0
ti0P

1
i0
vi0P

1
i0
yi0

and, for all i ∈ N with i 6= i0,

xiP
1
i viP

1
i tiP

1
i wiP

1
i ziP

1
i yi.

Since R1 ∈ ∏
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)}), and agent i0 is the local dictator for R̄ over
(Y 1,

∏
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)})), we have zP̄ (R1)w. Because R1 ∈ ∏
i∈N R(Y 3

i , {q(zi),
q(wi), q(ti), q(vi)}), this implies that i0 = i2. Hence, we have tP̄ (R1)v. Since R2 ∈∏

i∈N R(Y 2
i , {C(xi, R

0
i ), q(ti), q(vi)}), it follows that i0 = i1.

Let R2 ∈ Rn be a preference profile such that xi0P
2
i0
vi0 and, for all i ∈ N , R2

i |{xi,yi} =
R0

i |{xi,yi}, and C(xi, R
2
i ) = C(xi, R

0
i ), C(ti, R

2
i ) = {q(ti)}, C(vi, R

2
i ) = {q(vi)} and C(yi, R

2
i )

= C(yi, R
0
i ). Since agent i0 ∈ N is the local dictator for R̄ over (Y 2,

∏
i∈N R(Y 2

i , {C(xi, R
0
i ),

q(ti), q(vi)})) and R2 ∈ ∏
i∈N R(Y 2

i , {C(xi, R
0
i ), q(ti), q(vi)}), we have that xP̄ (R2)v. Re-

call that, for all i ∈ N , vi > yi. Hence, by strict monotonicity of preferences, viP
2
i yi for

all i ∈ N . Because the SOF R̄ satisfies Weak Pareto, we have vP̄ (R2)y. By transi-
tivity of R̄, xP̄ (R2)y. However, since R̄ satisfies IIA-MRS, and C(xi, R

2
i ) = C(xi, R

0
i ),

C(yi, R
2
i ) = C(yi, R

0
i ), and yR̄(R0)x, we must have yR̄(R2)x. This is a contradiction.

Lemma A.4 Let R̄ be a SOF satisfying Weak Pareto and IIA-MRS. If {x, y, z} ⊂ X is
a free triple, then there exists a local dictator for R̄ over ({x, y, z},Rn).

Proof. By Lemma A.3, there exist a local dictator i0 over ({x, y},Rn), a local dictator
i1 over ({y, z},Rn), and a local dictator i2 over ({x, z},Rn). Suppose that i0 6= i1. Let
R ∈ Rn be a preference profile such that xi0Pi0yi0 , yi1Pi1zi1 , and zi2Pi2xi2 . Then, we have
xP̄ (R)yP̄ (R)zP̄ (R)x, which contradicts the transitivity of R̄(R). Hence, we must have
i0 = i1. By the same argument, we have i0 = i1 = i2.

Proof of Proposition 2: Let R̄ be a SOF satisfying Weak Pareto and IIA-MRS. By
Lemma A.3, for every free pair {x, y} ⊂ X, there exists a local dictator over ({x, y},Rn).
By Lemma A.4 and Bordes and Le Breton [3, Theorem 2], these dictators must be the
same individual. Denote this individual by i0. It remains to show that, for any pair {x, y}
that is not free, i0 is the local dictator over ({x, y},Rn). Suppose, on the contrary, that
there exist {x, y} ⊂ X and R ∈ Rn such that {x, y} is not a free pair, and xi0Pi0yi0 but
yR̄(R)x. Define zi0 ∈ R`

+ as follows.
Case 1: {x, y} is a free pair for i0.

For all λ ∈]0, 1[, {λx + (1 − λ)y, x} and {λx + (1 − λ)y, y} are free pairs for i0. By
continuity, there exists λ∗ such that xi0Pi0 [λ

∗xi0 + (1 − λ∗)yi0 ]Pi0yi0 . Then, let zi0 :=
λ∗xi0 + (1− λ∗)yi0 .
Case 2: {x, y} is not a free pair for i0.
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Then, for all k ∈ {1, . . . , `}, xi0k ≥ yi0k with at least one strict inequality. Note that
y 6= 0.
Case 2-1: There exists k′ such that for all k ∈ {1, . . . , `} with k 6= k′, xi0k = yi0k and
yi0k′ > 0.

Then, xi0k′ > yi0k′ > 0. Given ε > 0, define wi0 ∈ R`
+ as wi0k′ := yi0k′ and, for all

k 6= k′, wi0k := yi0k + ε. For sufficiently small ε, we have xi0Pi0wi0Pi0yi0 by continuity
and strict monotonicity of preferences. Given δ > 0, define ti0 ∈ R`

+ as ti0k′ := wi0k′ − δ
and, for all k 6= k′, ti0k := wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0 , again by
continuity and strict monotonicity of preferences. Moreover, {t, x} and {t, y} are free
pairs for i0. Then, let zi0 := ti0 .
Case 2-2: There exists k′ such that, for all k ∈ {1, . . . , `} with k 6= k′, xi0k = yi0k and
yi0k′ = 0.

Then, for all k ∈ {1, . . . , `} with k 6= k′, xi0k = yi0k > 0. Let k′′ 6= k′. Given ε > 0,
define wi0 ∈ R`

+ as wi0k′′ := xi0k′′ − ε and, for all k 6= k′′, wi0k := xi0k. For sufficiently
small ε, we have xi0Pi0wi0Pi0yi0 . Given δ > 0, define ti0 ∈ R`

+ as ti0k′ := wi0k′ + δ and, for
all k 6= k′, ti0k := wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0 . Moreover, {t, x}
and {t, y} are free pairs for i0. Then, let zi0 := ti0 .
Case 2-3: There exist k′, k′′ ∈ {1, . . . , `} with k′ 6= k′′, xi0k′ > yi0k′ and xi0k′′ > yi0k′′ .

Let k∗ be such that yi0k∗ > 0. Given ε > 0, define wi0 ∈ R`
+ as wi0k∗ := yi0k∗ − ε and,

for all k 6= k∗, wi0k := xi0k. For sufficiently small ε, we have xi0Pi0wi0Pi0yi0 . Let k∗∗ 6= k∗.
Given δ > 0, define ti0 ∈ R`

+ as ti0k∗∗ := wi0k∗∗ + δ and, for all k 6= k∗∗, ti0k := wi0k. For
sufficiently small δ, we have xi0Pi0ti0Pi0yi0 . Moreover, {t, x} and {t, y} are free pairs for
i0. Then, let zi0 = ti0 .

Next, for each i 6= i0, let zi ∈ R`
+ be such that {z, x} and {z, y} are free pairs for i.

By the same construction as above, we can find such zi ∈ R`
+ for each i. Let z = (zi)i∈N

∈ Rn`
+ . Since i0 is the dictator over all free pairs, we have that xP̄ (R)z and zP̄ (R)y. By

transitivity of R̄, we have xP̄ (R)y, which contradicts the supposition that yR̄(R)x. ¥

A.2 Proof of Proposition 3

In order to prove the impossibility part, it is convenient to consider various possible
sizes of the population. Let ε > 0 be given. Suppose, to the contrary, that there exists a
SOF R̄ that satisfies Weak Pareto, IIA-ISεN and Anonymity.

Case n = 2. Consider the consumption bundles x := (10ε, ε, 0, ...), y := (20ε, ε, 0, ...),
z := (ε, 20ε, 0, ...), w := (ε, 10ε, 0, ...). Define preference relations R1 ∈ R and R2 ∈ R as
follows.
(i) On the subset

S1 := {v ∈ R`
+ | ∀i ∈ {3, ..., `}, vi = 0 and v2 ≤ min{v1, 2ε}}

we have
vR1v

′ ⇔ v1 + 2v2 ≥ v′1 + 2v′2,

and on the subset

S2 := {v ∈ R`
+ | ∀i ∈ {3, ..., `}, vi = 0 and v1 ≤ min{v2, 2ε}},
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we have
vR1v

′ ⇔ 2v1 + v2 ≥ 2v′1 + v′2.

(ii) On Bε(x) ∪Bε(y),

vR1v
′ ⇔ v1 + 2v2 +

∑̀

k=3

vk ≥ v′1 + 2v′2 +
∑̀

k=3

v′k,

and on Bε(z) ∪Bε(w),

vR1v
′ ⇔ 2v1 + v2 +

∑̀

k=3

vk ≥ 2v′1 + v′2 +
∑̀

k=3

v′k.

(iii) Note that the projection of Bε(x) ∪ Bε(y) on the subspace of good 1 and good 2,
namely, [Bε(x) ∪ Bε(y)] ∩ {v ∈ R`

+|∀i ∈ {3, ..., `}, vi = 0}, is included in S1, and the
projection of Bε(z) ∪Bε(w) on the subspace of good 1 and good 2 is included in S2.

-
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Figure 4: Proof of Proposition 3

Since
(w1 + ε) + 2(w2 − 2ε) > x1 + 2x2

and
2(y1 − 2ε) + (y2 + ε) > 2z1 + z2,
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it is possible to complete the definition of R1 so that wP1x and yP1z. Then, define R2 so
that it coincides with R1 on S1, on S2, and on Bε(a) for all a ∈ {x, y, z, w}. Similarly, it
is possible to complete the definition of R2 so that xP2w and zP2y. Figure 4 illustrates
this construction.

If the profile of preferences is R := (R1, R2), by Weak Pareto we have

(y, x)P̄ (R)(z, w) and (w, z)P̄ (R)(x, y).

If the profile of preferences is R′ := (R1, R1), by Anonymity we have

(y, x)Ī(R′)(x, y) and (w, z)Ī(R′)(z, w).

Since R1 and R2 coincide on Bε(a) for all a ∈ {x, y, z, w}, it follows from IIA-ISεN that

(y, x)Ī(R′)(x, y) ⇔ (y, x)Ī(R)(x, y),

(w, z)Ī(R′)(z, w) ⇔ (w, z)Ī(R)(z, w).

By transitivity, (x, y)P̄ (R)(x, y), which is impossible.
Case n = 3. Consider the consumption bundles x := (10ε, 2ε

3
, 0, ...), y := (20ε, 2ε

3
, 0, ...),

t := (15ε, 2ε
3
, 0, ...), z := (2ε

3
, 20ε, 0, ...), w := (2ε

3
, 10ε, 0, ...), r := (2ε

3
, 15ε, 0, ...). Define

preference relations R1, R2 and R3 as above on the subset S1, on S2, and on Bε(a) for
all a ∈ {x, y, z, w, t, r}. Complete their definitions so that yP1z, wP1x, tP2r, zP2y, xP3w,
and rP3t.

If the profile of preferences is R := (R1, R2, R3), then by Weak Pareto we have

(y, t, x)P̄ (R)(z, r, w) and (w, z, r)P̄ (R)(x, y, t).

If the profile of preferences is R′ := (R1, R1, R1), by Anonymity we have

(y, t, x)Ī(R′)(x, y, t) and (w, z, r)Ī(R′)(z, r, w).

Since R1, R2 and R3 coincide on Bε(a) for all a ∈ {x, y, t, z, w, r}, it follows from IIA-ISεN
that

(y, t, x)Ī(R′)(x, y, t) ⇔ (y, t, x)Ī(R)(x, y, t),

(w, z, r)Ī(R′)(z, r, w) ⇔ (w, z, r)Ī(R)(z, r, w).

By transitivity, (x, y, t)P̄ (R)(x, y, t), which is impossible.
Case n = 2k. Partition the population into k pairs, and construct an argument similar
to the case n = 2, with the consumption bundles x = (10ε, 2ε

n
, 0, ...), y = (20ε, 2ε

n
, 0, ...),

z = (2ε
n
, 20ε, 0, ...), w = (2ε

n
, 10ε, 0, ...), and the allocations (y, x, y, x, ...), (x, y, x, y, ...),

(z, w, z, w, ...) and (w, z, w, z, ...).
Case n = 2k + 1. Partition the population into k − 1 pairs and one triple, and
construct an argument combining the cases n = 2 and 3, with the consumption bun-
dles x = (10ε, 2ε

n
, 0, ...), y = (20ε, 2ε

n
, 0, ...), t = (15ε, 2ε

n
, 0, ...), z = (2ε

n
, 20ε, 0, ...), w =
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(2ε
n
, 10ε, 0, ...), r = (2ε

n
, 15ε, 0, ...), and the allocations (y, x, y, x, ..., y, t, x), (x, y, x, y, ..., x,

y, t), (z, w, z, w, ...z, r, w) and (w, z, w, z, ..., w, z, r).

Remark: One may consider a condition which is weaker than both IIA–ISεN and IIA-
ISFA by allowing the social ranking of any two allocations x, y to depend on the portions
of indifference surfaces in the union of the ε-neighborhoods of xi and yi, and the set
Ω(x, y). With this weaker condition, the same impossibility still holds as in Proposition
3. The above proof can be applied without any changes to derive this result.

A.3 Proof of Lemma 1

To prove Lemma 1, we need an auxiliary lemma. Define

X1 := {xi ∈ R`
+ \ {0} | ∀k ≥ 2, xik = 0}

X2 := {xi ∈ R`
+ \ {0} | ∀k 6= 2, xik = 0}.

Lemma A.5 For all Ri ∈ R, and all x, y ∈ X, there exists R∗
i ∈ R such that

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 6= ∅

I(yi, R
∗
i ) ∩X1 6= ∅

Proof. Let Ri ∈ R and x, y ∈ X be given. Without loss of generality, assume that
yiRixi. Define A := I(xi, Ri) ∩ Ω(x, y) and

U(xi, R
∗
i ) :=

⋂
a∈A


 ⋂

q∈C(a,Ri)

H(a, q)




where we recall that H(a, q) = {b ∈ R`
+ | q · b ≥ q · a}. Let I(xi, R

∗
i ) be the boundary of

U(xi, R
∗
i ).

Define a function g : A → R+ as follows: For every a ∈ A, if (a1 + 1, 0, . . . , 0)Pia,
then let g(a) = 0, and otherwise, let g(a) ∈ R be such that (a1 +1, g(a)a2, . . . , g(a)a`)Iia.
By continuity and strict monotonicity of Ri, g(a) exists uniquely and 0 ≤ g(a) < 1. By
continuity of Ri, g is continuous. For every a ∈ A, let b(a) := (a1 +1, g(a)a2, . . . , g(a)a`).
Define f : A → X1 by

f(a) := a +
1

1− g(a)
[b(a)− a]

=

(
a1 +

1

1− g(a)
, 0, . . . , 0

)
.

Since b(a)Ria, it follows that for every q ∈ C(a,Ri), q · b(a) ≥ q ·a, and so q · f(a) ≥ q ·a.
Hence, f(a) ∈ H(a, q).

68



The function f is continuous, and the set A is compact and nonempty. Hence, the
set f(A) is compact and nonempty. Therefore, there exists a∗ ∈ A such that ||f(a∗)|| =
maxa∈A ||f(a)|| = maxa∈A

[
a1 + 1

1−g(a)

]
. Then, for all a ∈ A, and all q ∈ C(a,Ri), since

f(a) ∈ H(a, q) and f(a∗) ≥ f(a), we have f(a∗) ∈ H(a, q). Thus, f(a∗) ∈ U(xi, R
∗
i ),

which proves that U(xi, R
∗
i ) ∩X1 6= ∅. By continuity and strict monotonicity of prefer-

ences, I(xi, R
∗
i ) ∩X1 6= ∅.

If yiIixi, then we are done. Assume that yiPixi. Define

U(yi, R
∗
i ) :=

⋂

a∈I(yi,Ri)∩Ω(x,y)


 ⋂

q∈C(a,Ri)

H(a, q)


 .

By continuity of preferences, there exists δ > 0 such that for all zi ∈ [(1 + δ)Ii(xi, Ri)] ∩
Ω(x, y), yiPizi. Define

Ũ(yi, R
∗
i ) := U(yi, R

∗
i ) ∩ (1 + δ)U(xi, R

∗
i ).

Then, let I(yi, R
∗
i ) be the boundary of Ũ(yi, R

∗
i ). Note that I(xi, R

∗
i ) ∩ I(yi, R

∗
i ) = ∅. A

similar argument as above shows that U(yi, R
∗
i ) ∩X1 6= ∅. Since U(xi, R

∗
i ) ∩X1 6= ∅, we

have [(1 + δ)U(xi, R
∗
i )] ∩ X1 6= ∅. Thus, Ũ(yi, R

∗
i ) ∩ X1 6= ∅. By continuity and strict

monotonicity of preferences, I(yi, R
∗
i ) ∩X1 6= ∅.

Proof of Lemma 1.
Let R,R′ ∈ Rn, x, y ∈ X be such that for all i ∈ N , Ri and R′

i agree on {xi, yi}, and for
no i ∈ N, xiIiyi. Assume that xP̄ (R)y.

By Lemma A.5, there exists R∗ ∈ Rn such that for all i ∈ N,

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 6= ∅

I(yi, R
∗
i ) ∩X1 6= ∅,

and similarly there exists R′∗ ∈ Rn such that for all i ∈ N, ,

I(xi, R
′
i) ∩ Ω(x, y) = I(xi, R

′∗
i ) ∩ Ω(x, y)

I(yi, R
′
i) ∩ Ω(x, y) = I(yi, R

′∗
i ) ∩ Ω(x, y)

I(xi, R
′∗
i ) ∩X2 6= ∅

I(yi, R
′∗
i ) ∩X2 6= ∅.

By strict monotonicity of preferences, each of I(xi, R
∗
i ) ∩X1, I(yi, R

∗
i ) ∩X1, I(xi, R

′∗
i ) ∩

X2, and I(yi, R
′∗
i ) ∩X2 is a singleton. Define x1, y1 ∈ Xn

1 by {x1
i } := I(xi, R

∗
i ) ∩X1 and

{y1
i } := I(yi, R

∗
i ) ∩X1 for all i ∈ N. Notice that for all i ∈ N, x1

i1 > 0, y1
i1 > 0 because
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x, y ∈ X and preferences are strictly monotonic. Construct x1∗, y1∗ ∈ Xn
1 as follows: for

all i ∈ N ,

x1∗
i1 := x1

i1 +
1

3

∣∣x1
i1 − y1

i1

∣∣

y1∗
i1 := max

{
1

2
y1

i1, y
1
i1 −

1

3

∣∣x1
i1 − y1

i1

∣∣
}

.

Notice that, for all i ∈ N,

x1∗
i1 > y1∗

i1 ⇔ xiPiyi

y1∗
i1 > x1∗

i1 ⇔ yiPixi.

By Weak Pareto, x1∗P̄ (R∗)x and yP̄ (R∗)y1∗. By IIA-ISFA, xP̄ (R∗)y. Therefore, by tran-
sitivity,

x1∗P̄ (R∗)y1∗.

Now, define x2, y2 ∈ Xn
2 by {x2

i } := I(xi, R
′∗
i )∩X2 and {y2

i } := I(yi, R
′∗
i )∩X2 for all

i ∈ N. Again, x2
i2 > 0, y2

i2 > 0 for all i ∈ N. Construct x2∗, y2∗ ∈ Xn
2 as follows: for all

i ∈ N ,

x2∗
i2 := max

{
1

2
x2

i2, x
2
i2 −

1

3

∣∣x2
i2 − y2

i2

∣∣
}

y2∗
i2 := y2

i2 +
1

3

∣∣x2
i2 − y2

i2

∣∣ .

Notice that, for all i ∈ N,

x2∗
i2 > y2∗

i2 ⇔ xiP
′
iyi ⇔ xiPiyi ⇔ x1∗

i1 > y1∗
i1

y2∗
i2 > x2∗

i2 ⇔ yiP
′
ixi ⇔ yiPixi ⇔ y1∗

i1 > x1∗
i1 .

By Weak Pareto, xP̄ (R′∗)x2∗ and y2∗P̄ (R′∗)y.
Let R∗∗ ∈ Rn be such that for all i ∈ N,

x2∗
i P ∗∗

i x1∗
i and y1∗

i P ∗∗
i y2∗

i .

Notice that, for all i ∈ N,

I(x1∗
i , R∗∗

i ) ∩ Ω(x1∗, y1∗) = I(x1∗
i , R∗

i ) ∩ Ω(x1∗, y1∗) = {x1∗
i },

I(y1∗
i , R∗∗

i ) ∩ Ω(x1∗, y1∗) = I(y1∗
i , R∗

i ) ∩ Ω(x1∗, y1∗) = {y1∗
i }.

Therefore, by IIA-ISFA, x1∗P̄ (R∗∗)y1∗. By Weak Pareto, x2∗P̄ (R∗∗)x1∗ and y1∗P̄ (R∗∗)y2∗,
so that by transitivity, x2∗P̄ (R∗∗)y2∗.

Now, we also have that, for all i ∈ N,

I(x2∗
i , R∗∗

i ) ∩ Ω(x2∗, y2∗) = I(x2∗
i , R′∗

i ) ∩ Ω(x2∗, y2∗) = {x2∗
i },

I(y2∗
i , R∗∗

i ) ∩ Ω(x2∗, y2∗) = I(y2∗
i , R′∗

i ) ∩ Ω(x2∗, y2∗) = {y2∗
i }.
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By IIA-ISFA again, x2∗P̄ (R′∗)y2∗. By transitivity, we deduce xP̄ (R′∗)y. Finally, by IIA-
ISFA,

xP̄ (R′)y.

We have proved that xP̄ (R)y implies xP̄ (R′)y,. It follows from symmetry of the
argument that yP̄ (R)x implies yP̄ (R′)x, and that xĪ(R)y implies xĪ(R′)y.

A.4 Logical Relations between the IIA Axioms

1. IIA-MRS implies neither IIA-ISFA nor IIA.
Consider the following SOF: ∀R ∈ Rn, ∀x, y ∈ Rn`

+ , x R̄(R) y if and only if
(i) ∃p ∈ R`

+ such that ∀i ∈ N , p ∈ C(xi, Ri), and ∀i, j ∈ N , p · xi = p · xj, or
(ii) 6 ∃p ∈ R`

+ such that ∀i ∈ N , p ∈ C(yi, Ri), and ∀i, j ∈ N , p · yi = p · yj.
This SOF satisfies IIA-MRS but violates IIA-ISFA and hence IIA.

2. IIA-ISεN implies neither IIA-ISFA nor IIA.
This is derived from fact 1 above and the fact that IIA-MRS implies IIA-ISεN.

3. IIA-ISεN does not imply IIA-MRS.
This is derived from Propositions 2 and 3.

4. IIA-WIS implies neither IIA-ISεN nor IIA-ISFA.
This is derived from Propositions 3, 4 and Corollary 1.

5. IIA-ISFA implies none of IIA-ISεN, IIA-MRS and IIA.
Fix ω0 := (1, . . . , 1) ∈ R`. For each i ∈ N , each Ri ∈ R and each xi ∈ R`

+, let
α(xi, Ri) ∈ R+ be defined as in the proof of Proposition 5. Consider the following SOF:
∀R ∈ Rn, ∀x, y ∈ Rn`

+ , x R̄(R) y if and only if (i) 6 ∃λ ∈ R+ such that
∑

i∈N yi = λω0, or
(ii) ∃λ, λ′ ∈ R+ such that

∑
i∈N xi = λω0 and

∑
i∈N yi = λ′ω0, and mini∈N α(xi, Ri) ≥

mini∈N α(yi, Ri). This SOF satisfies IIA-ISFA, but it violates IIA-ISεN and hence IIA-
MRS and IIA.

6. IIA-ISPω0 implies none of IIA-ISεN, IIA-MRS, IIA-ISFA and IIA.
This is derived from Propositions 3-5.

7. IIA-WIS does not imply IIA-ISPω0.
Fix p := (1, . . . , 1) ∈ R`. For each i ∈ N , each Ri ∈ R and each xi ∈ R`

+, define
e(xi, Ri) := min{p · yi|yi ∈ I(xi, Ri)}. (That is, e(xi, Ri) is the minimum expenditure to
attain I(xi, Ri) at p.) Consider the following SOF: ∀R ∈ Rn, ∀x, y ∈ Rn`

+ , xR̄(R)y if
and only if mini∈N e(xi, Ri) ≥ mini∈N e(yi, Ri). This SOF satisfies IIA-WIS but violates
IIA-ISPω0.

71



References

[1] Arrow, K. J., “A Difficulty in the Concept of Social Welfare,” Journal of Political
Economy 58, 1950, 328-346.

[2] Arrow, K. J., Social Choice and Individual Values, New York: Wiley, 1951. Second
ed., 1963.

[3] Bordes, G. and M. Le Breton, “Arrovian Theorems with Private Alternatives Do-
mains and Selfish Individuals,” Journal of Economic Theory 47, 1989, 257-281.

[4] Bossert, W., M. Fleurbaey and D. Van de gaer, “Responsibility, Talent, and Com-
pensation: A Second-Best Analysis,” Review of Economic Design 4, 1999, 35-55.

[5] Campbell, D. E. and J. S. Kelly, “Information and Preference Aggregation,” Social
Choice and Welfare 17, 2000, 3-24.

[6] Chichilnisky, G., “A Unified Perspective on Resource Allocation: Limited Arbitrage
is Necessary and Sufficient for the Existence of a Competitive Equilibrium, the Core
and Social Choice,” in K. J. Arrow, A. K. Sen and K. Suzumura, eds., Social Choice
Re-examined, Vol. 1, London: Macmillan and New York: St Martin’s Press, 1997,
121-174 .

[7] d’Aspremont, C. and L. Gevers, “Equity and the Informational Basis of Collective
Choice,” Review of Economic Studies 44, 1977, 199-209.

[8] Fleurbaey, M. and F. Maniquet, “Utilitarianism versus Fairness in Welfare Eco-
nomics,” 1996, forthcoming in M. Salles and J. A. Weymark, eds., Justice, Political
Liberalism and Utilitarianism: Themes from Harsanyi and Rawls, Cambridge, UK:
Cambridge University Press.

[9] Fleurbaey, M. and F. Maniquet, “Fair Social Orderings with Unequal Production
Skills,” Social Choice and Welfare 24, 2005, 1-35.

[10] Hammond, P., “Equity, Arrow’s Conditions, and Rawls’ Difference Principle,”
Econometrica 44, 1976, 793-804.

[11] Hansson, B., “The Independence Condition in the Theory of Social Choice,” Theory
and Decision 4, 1973, 25-49.

[12] Inada, K.-I., “On the Economic Welfare Function,” Econometrica 32, 1964, 316-
338.

[13] Kalai, E., E. Muller and M. A. Satterthwaite, “Social Welfare Functions When
Preferences Are Convex, Strictly Monotonic, and Continuous,” Public Choice 34,
1979, 87-97.

72



[14] Maniquet, F., On Equity and Implementation in Economic Environments, Ph.D.
Thesis, University of Namur, 1994.

[15] Pazner, E., “Equity, Nonfeasible Alternatives and Social Choice: A Reconsideration
of the Concept of Social Welfare,” in J. J. Laffont, ed., Aggregation and Revelation
of Preferences, Amsterdam: North-Holland, 1979.

[16] Pazner, E. and D. Schmeidler, “Egalitarian-Equivalent Allocations: A New Concept
of Economic Equity,” Quarterly Journal of Economics 92, 1978, 671-687.

[17] Roberts, K., “Interpersonal Comparability and Social Choice Theory,” Review of
Economic Studies 47, 1980, 421-439.

[18] Sen, A. K., Collective Choice and Social Welfare, San-Francisco: Holden-Day, 1970.
Republished, Amsterdam: North-Holland, 1979.

[19] Suzumura, K., “On Pareto-Efficiency and the No-Envy Concept of Equity,” Journal
of Economic Theory 25, 1981, 367-379.

[20] Suzumura, K., “On the Possibility of ‘Fair’ Collective Choice Rule,” International
Economic Review 22, 1981, 351-364.

[21] Tadenuma, K., “Efficiency First or Equity First? Two Principles and Rationality
of Social Choice,” Journal of Economic Theory 104, 2002, 462-472.

73


