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Chapter 17
Entry Barriers and Economic Welfare∗

1 Introduction

Recent studies in the theoretical industrial organization literature have uncovered several
instances which cast serious doubt on the reasonableness of “a widespread belief that
increasing competition will increase welfare (Stiglitz [14, p.184])”.1 It has been shown
that there are cases, which are not altogether unreasonable, where social welfare will be
increased by strengthening, rather than weakening, the protection of incumbent firms
from the threat of potential entry. This is in sharp contrast with the traditional belief.2

What is not known, however, is how robust these “pathologies” in fact are. We intend
to settle this problem by proving two “excess entry theorems” in the quasi-Cournot
(parametric conjectural variations) homogeneous oligopoly model (Seade [11; 12]).

In the first place, we presuppose the existence of a strong (“first-best”) government
that could costlessly enforce the marginal-cost pricing principle by firms in an oligopolistic
market and regulate entry in pursuit of “first-best” social welfare optimization. It is
shown that the number of firms at the free-entry equilibrium exceeds the “first-best”
welfare optimizing number of firms. The result has already been noted by von Weizsäcker
[17; 18] and others in terms of numerical examples. Our Theorem 1 asserts that this
phenomenon always holds true for the family of quasi-Cournot models at hand. An
implication of this result is that the existence of entry barriers which protect incumbent

∗First published in Review of Economic Studies, Vol.54, 1987, pp.157-167 as a joint paper with K.
Kiyono. We are indebted to Professors Motoshige Itoh and Masahiro Okuno for their helpful comments
on an earlier draft. Thanks are also due to an anonymous referee of Review of Economic Studies for
his/her incisive comments which helped us greatly in preparing the published version. Partial financial
support from the Japan Economic Research Foundation and the Japan Securities Scholarship Foundation
is gratefully acknowledged.

1As Baumol [1, p.2] has observed, “... the standard analysis [of industrial organization] leaves us
with the impression that there is a rough continuum, in terms of desirability of industry performance,
ranging from unregulated pure monopoly as the pessimal arrangement to perfect competition as the
ideal, with relative efficiency in resource allocation increasing monotonically as the number of firms
expands.” Baumol’s contestable market theory casts serious doubt on the validity of this impression, so
does our excess entry theorem from a somewhat different angle.

2Weizsäcker’s analysis [17; 18] of the entry in a Cournot market is a good case in point. See, also,
Dixit and Stiglitz [2], Kiyono [6], Spence [13], Suzumura [15] and Tandon [16].
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firms from potential competitors is not necessarily welfare decreasing in sharp contrast
with the traditional belief.

A problem remains with Theorem 1, however, in that an omnipotent “first-best”
government does not exist in reality, and the “first-best” ideal is unrealizable in the actual
economy.3 Therefore, even if the intervention by a “first-best” government with a view to
restricting the number of firms within an industry may be welfare-improving, it does not
justify the intervention by a “second-best” government that lacks the leverage of optimal
price regulation. What is needed is an evaluation of the social gains from alternative
feasible government actions. This is precisely what we intend to perform in the second
part of this chapter. In other words, we analyse an explicit “second-best” social welfare
optimum in an oligopolistic economy and show that the “second-best” number of firms
will fall short of the number of firms at the free entry equilibrium if the marginal revenue of
each firm decreases with an increase of the output of other firms taken together. By the
“second-best” we here mean that oligopolistic (marginal-cost-equals-marginal-revenue)
pricing is taken for granted by an entry regulating government pursuing social welfare
optimization. The implications of our analyses and several qualifications on our results
will be discussed in the final section.

2 The Model

2.1. We will be concerned with a model of an oligopolistic industry producing a ho-
mogenous good. All firms are assumed to be technologically as well as behaviourally
identical. The number of firms in the industry will be denoted by n. The output of the
i-th firm is zi (i = 1, 2, . . . , n) so that Q := Σn

i=1zi represents the industry output. The
cost function of each and every firm and the inverse market demand function are denoted
by C(zi) (i = 1, 2, . . . , n) and p = f(Q), respectively. It is assumed that C and f are
continuously differentiable as often as is required by the following analysis. The profit of
the i-th firm will then be given by

πi(zi; Qi) = zif(zi + Qi)− C(zi), (1)

where Qi := Σj 6=izj = Q− zi (i = 1, 2, . . . , n). Let µ denote the coefficient of conjectural
variations, viz., µ := ∂Q/∂zi (i = 1, 2, . . . , n). The profit maximizing output zi of the
i-th firm corresponding to the output of all other firms taken together, Qi, will then
satisfy

f(zi + Qi) + µzif
′(zi + Qi)− C ′(zi) = 0 (2)

and
2µf ′(zi + Qi) + µ2zif

′′(zi + Qi)− C ′′(zi) < 0. (3)

Throughout this chapter, we assume the following:

3See von Weizsäcker [17, p.400] and Schmalensee [10] on this point.
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Assumption A1. The quasi-Cournot conjecture prevails, viz., µ is a positive constant
which is less than n.4

Assumption A2. The inverse demand function satisfies −M ≤ f ′(Q) < 0 for some
M > 0 and for all Q > 0.

Assumption A3. The cost function satisfies (i) C ′(z) > 0 for all z > 0, and (ii) either
C(0) > 0 or limz→0+ C ′′(z) := C ′′(0) < 0.

Assumption A4. The marginal cost decreases, if ever it does, at a slower rate than
the perceived demand curve, viz.,

µf ′(zi + Qi) < C ′′(zi) (4)

for all zi > 0 and Qi > 0 (i = 1, 2, . . . , n).

Assumption A5. The marginal revenue of any firm is a decreasing function of the
aggregate output of the other firms, viz.,

f ′(zi + Qi) + µzif
′′(zi + Qi) < 0 (5)

for all zi > 0 and Qi > 0 (i = 1, 2, . . . , n).

Assumption A6. For any n and µ satisfying Assumption A1, a symmetric quasi-
Cournot equilibrium uniquely exists, and is defined as triplet {z(n, µ), Q(n, µ), p(n, µ)}
of the firm output z(n, µ), the industry output Q(n, µ) and the price p(n, µ) satisfying

f(nz(n, µ)) + µz(n, µ)f ′(nz(n, µ))− C ′(z(n, µ)) = 0 (6)

Q(n, µ) := nz(n, µ), p(n, µ) := f(Q(n, µ)). (7)

2.2. To simplify our notation, let us introduce the following symbols:

m :=
n

µ
, K(n, µ) := 1− C ′′(z(n, µ))

µf ′(Q(n, µ))
, E(Q) :=

Qf ′′(Q)

f ′(Q)
. (8)

4The gist of this assumption is that each firm can predict with confidence the effects of its action on
the other firms taken together. Note that the Cournot conjecture, to the effect that each firm supposes
that none of the other firms will deviate from their current course of action if the given firm deviates, is
a special case of A1, where µ = 1, whereas if all firms are fully aware of their interactions and collude
as if they formed a cartel, we have another special case of A1, where µ = n. It follows that m := n/µ
may be construed to be the “effective” number of Cournot oligopolists. In general, 0 < µ ≤ 1 (resp.
1 < µ ≤ n) may be construed to correspond to the situation of “struggle” (resp. “collusion”) among
firms. We owe these observation to Seade [12].
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In what follows, m will be referred to as the “effective” number of firms.5 In these terms,
the inequality (3) may be reduced to

E(Q(n, µ)) + mK(n, µ) + m > 0 (9)

at the symmetric quasi-Cournot equilibrium.
Note that Assumptions A1, A2, A4 and (8) together entail

K(n, µ) > 0 (10)

whereas Assumptions A1, A2, (5) and (8) together entail

E(Q(n, µ)) + m > 0. (11)

Comparing (9) with (10) and (11), we may assert that Assumptions A1, A2, A4 and A5
ensure that the second-order condition (9) for profit maximization is satisfied.

Note also that Assumptions A4 and A5 are sufficient for an adjustment process in a
quasi-Cournot market

żi = αi{zi(Qi)− zi}, αi > 0 (12)

to be dynamically stable, where zi(Qi) is a solution to (2) for a given Qi, and żi denotes
the time derivative of zi.

6

2.3. For each fixed number of firms n, the socially optimal firm output z∗(n) may be
defined as the unique maximizer of the market surplus function, viz.,

z∗(n) := arg max
z>0

{∫ nz

0

f(x)dx− nC(z)

}
. (13)

As is well-known, z∗(n) defined by (13) satisfies the marginal cost principle:

f(nz∗(n)) = C ′(z∗(n)). (14)

2.4. Finally, let us consider the entry-exit dynamics of the quasi-Cournot market. Sup-
pose that each firm earns positive (resp. negative) profit at the symmetric quasi-Counot
equilibrium. Then there exists an incentive for a new firm (resp. an incumbent firm) to

5See footnote 4.
6See Hahn [4] and Seade [11].
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enter into (resp. to exit from) this industry. Treating the number of firms as a continuous
variable, we formulate this entry-exit dynamics by a differential equation:7

ṅ = β{f(nz(n, µ))z(n, µ)− C(z(n, µ))}, β > 0, (15)

where the expression within the curly brackets denotes profit, β is an adjustment coeffi-
cient and ṅ denotes the time derivative of n.

Let ne(µ) denote the stationary point of (15) corresponding to µ > 0, viz.,

f(ne(µ)z(ne(µ), µ))z(ne(µ), µ) = C(z(ne(µ), µ)). (16)

We relegate the proof of the uniqueness and stability of ne(µ) to the Appendix at
the end of the chapter. In what follows, the symmetric quasi-Cournot equilibrium
{z(ne(µ), µ), Q(ne(µ), µ), p(ne(µ), µ)} will be referred to as the free-entry quasi-Cournot
equilibrium, whereas ne(µ) will be called the equilibrium number of firms .

3 The First-Best Excess Entry Theorem

3.1. Let us now set about analysing the “first-best” welfare optimum. Our first order
of business is to examine the property of the socially optimal firm output z∗(n) vis-à-vis
that of the equilibrium firm output z(n, µ).

Lemma 1. For each n > 0 and µ > 0, (a) z∗(n) > z(n, µ) holds true, and (b) z(n, µ)
is a decreasing function of µ > 0.

Proof. See Appendix. ‖

Several straightforward implications of Lemma 1 are worth mentioning at this stage.
First, if we define Q∗(n) := nz∗(n) and p∗(n) := f(Q∗(n)), we may conclude from As-
sumption A2 and Lemma 1(a) that Q∗(n) > Q(n, µ) and p∗(n) < p(n, µ) hold true for all
n and µ satisfying 0 < µ < n. Therefore, for any number of firms n > 0 and conjectural
coefficient µ > 0 such that the “effective” number of firms m exceeds one, the equilibrium
industry output (resp. the equilibrium price) is less than (resp. greater than) the socially
optimal industry output (resp. socially optimal price). Second, if we let µ converge to 0
fixing n, z(n, µ) increases by virtue of Lemma 1(b), which is bounded from above by z∗(n)
thanks to Lemma 1(a). Therefore, z(n, 0) := limµ→0 z(n, µ) exists. On the other hand,
if we let µ converge to 0 in (6), taking the boundedness of {z(n, µ)} into consideration,
we obtain by continuity that

7Treating the number of firms as a continuous variable is a common practice in the analysis of firm
entry, which is followed by Dixit and Stiglitz [2], Okuguchi [7], Ruffin [9], Seade [12], von Weizsäcker
[17; 18], among many others. See Seade [12, p.482] for an attempt to defend this common practice. See,
also the concluding remark (4).
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f(nz(n, 0)) = c′(z(n, 0)) (17)

holds true. Comparing (14) and (17) and noting the uniqueness of z∗(n), we may conclude
that

lim
µ→0

z(n, µ) := z(n, 0) = z∗(n) (18)

holds true for every n > 0.8

3.2. How about the effect of a change is n on the level of firm output? First, differentiating
(14) with respect to n, we obtain

z′∗(n) :=
d

dn
z∗(n) = − z∗(n)

n− C ′′(z∗(n))

f ′(nz∗(n))

(19)

which is negative for all n satisfying n > µ. Therefore, the socially optimal level of
firm output decreases in response to the increase in the number of firms in the industry .
Secondly, differentiating (6) with respect to n, we obtain

zn(n, µ) :=
∂

∂n
z(n, µ) = −z(n, µ)

n

E(Q(n, µ)) + m

E(Q(n, µ)) + m + K(n, µ)
, (20)

which is negative by virtue of (10) and (11). Therefore, the equilibrium level of firm
output decreases in response to the increase in the number of firms in the industry .

3.3. How will the equilibrium number of firms ne(µ) respond to a change in µ > 0? We
may easily verify the following:

Lemma 2. n′e(µ) > 0 for all µ > 0.

Proof. See Appendix. ‖

Roughly speaking, the message of this lemma may be taken as follows: The more
collusive the interfirm relationship becomes the more firms will there be in the industry
at the free entry quasi-Cournot equilibrium. An intuitive reason for this result is that, as

8Letting µ converge to 0 corresponds to a situation where each and every firm becomes less and less
aware of the effect of its own output change on the industry output. Therefore, (18) may be construed
as implying that the equilibrium firm output converges to the socially optimal firm output when the
“subjective size” of a firm becomes infinitesimal.
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the industry becomes more collusive, the profit of each firm increases, thereby enticing
prospective firms to enter into this industry.

3.4. So much for preliminaries. Let us now examine the consequence of the intervention
by a price and entry regulating government in pursuit of “first-best” welfare optimization.
Defining the first-best market surplus function by

Wf (n) :=

∫ nz∗(n)

0

f(x)dx− nC(z∗(n)), (21)

we define the first-best number of firms nf by

nf := arg max
n>0

Wf (n). (22)

In order to characterize nf , we differentiate Wf (n) to obtain

W ′
f (n) = f(nz∗(n))z∗(n)− C(z∗(n)), (23)

where use is made of (14) in deleting the terms involving z′∗(n).
Differentiating (23) and making use of (14) and (19), we obtain

W ′′
f (n) = −{z∗(n)}2C ′′(z∗(n))

n− C ′′(z∗(n))

f ′(nz∗(n))

. (24)

It follows that W ′
f (n) = 0 holds true if and only if

f(nz∗(n)) =
C(z∗(n))

z∗(n)
, (25)

viz., price equals average cost , whereas W ′′
f (n) < 0 holds true under Assumptions A1,

A2 and A3 if and only if C ′′(z∗(n)) > 0. Therefore, the first-best number of firms nf is
characterized by (25) if the marginal cost is increasing.

We are now at the stage of putting forward the first main result of this chapter.

Theorem 1 (First-Best Excess Entry Theorem). Assume that Assumptions A1-A6
hold true. Assume further that (i) the marginal cost is increasing; and (ii) the nominal
as well as the “effective” number of firms exceeds one at the free entry quasi-Cournot
equilibrium. Then the equilibrium number of firms ne(µ) exceeds the first-best number of
firms nf .

Proof. See Appendix. ‖
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Among the conditions A1-A6, which lie behind Theorem 1, A5 may seem to be rather
stringent. However, we may replace it by a weaker

Assumption A5∗

E(Q(n, µ)) + mK(n, µ) + m > 0,

E(Q(n, µ)) + K(n, µ) + m > 0.

Note that the first part of Assumption A5∗ is nothing other than the second-order con-
dition for profit maximization (9), whereas the second part is a necessary and sufficient
condition, due to Seade [11; 12], for the dynamic stability of the process (12). To the
extent that Assumption A5∗ may replace A5, which may easily be verified to be the case,
Theorem 1 can be generalized.

4 The Second-Best Excess Entry Theorem

4.1. However desirable the “first-best” ideal may seem to be, an actual government
may be unable to enforce the marginal cost principle required by the “first-best” welfare
optimization. Let us suppose, instead, that oligopolistic pricing has to be taken for
granted by an actual government and try to see if the main message of our first-best
excess entry theorem survives under this change in the leverage of a government.

Let us define the second-best market surplus function by

Ws(n, µ) :=

∫ nz(n,µ)

0

f(x)dx− nC(z(n, µ)), (26)

in terms of which the second-best number of firms ns(µ) is defined by

ns(µ) := arg max
n>0

Ws(n, µ). (27)

4.2. In what follows, we show that ne(µ) > ns(µ) necessarily holds true. Assume, to the
contrary, that ns(µ) ≥ ne(µ) happens to be the case. Differentiating (26) with respect to
n, we obtain

∂

∂n
Ws(n, µ) = µ{z(n, µ)}2f ′(nz(n, µ))

E(Q(n, µ)) + m

E(Q(n, µ)) + m + K(n, µ)
+ π(n, µ), (28)

where

π(n, µ) := f(nz(n, µ))z(n, µ)− C(z(n, µ)) (29)

8



and use is made of (6) and (20). We then note that

∂

∂n
π(n, µ) = f ′(nz(n, µ)){z(n, µ)}2mK(n, µ) + E(Q(n, µ)) + m

E(Q(n, µ)) + m + K(n, µ)
< 0 (30)

holds true, where use is made of (6), (10), (11) and (20). Since π(ne(µ), µ) = 0 holds
true by the very definition of ne(µ), (30) implies that π(n, µ) < 0 for all n > ne(µ). It
then follows that

∂

∂n
Ws(n, µ) < 0 for all n ≥ ne(µ), (31)

where use is made of Assumption A2, (10) and (11). It follows from ns(µ) ≥ ne(µ) and
(31) that (∂/∂n)Ws(ns(µ), µ) < 0 holds true, in contradiction with the definition (27) of
ns(µ). By reductio ad absurdum, we may assert the following result.

Theorem 2 (Second-Best Excess Entry Theorem). Assume that Assumptions A1-A6
hold true. Then the equilibrium number of firms ne(µ) exceeds the second-best number of
firms ns(µ).

Unlike Theorem 1, the validity of Theorem 2 hinges squarely on Assumption A5.
Indeed, if we replace Assumption A5 by A5∗, the assertion of Theorem 2 will become
untenable. Note also that each incumbent firm’s profit is positive at the second-best
optimum if Assumption A5 is satisfied, viz., π(ns(µ), µ) > 0, which may be seen from
(28) and (∂/∂n)Ws(ns(µ), µ) = 0. Therefore, the financial viability of each firm at the
second-best optimum is guaranteed.

4.3. Note, in passing, that (31) yields (∂/∂n)Ws(ne(µ), µ) < 0, viz., the “second-best”
surplus Ws(n, µ) is a decreasing function of n at the equilibrium number of firms ne(µ).
Therefore, we have the following:9

Theorem 3. Assume that Assumptions A1-A6 hold true. Then a small restriction
in the number of firms at the free-entry quasi-Cournot equilibrium raises welfare unam-
biguously.

The thrust of this result lies in the following fact: even if we cannot be sure where
ns(µ) is located exactly (e.g. because of uncertainty on the precise nature of the functions
involved), we do know that “exit” is welfare-improving at the margin.

9Thanks are due to an anonymous referee who suggested this proposition to us.
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5 Concluding Remarks

In this chapter, two excess entry theorems are presented. Presupposing the existence of a
strong (“first-best”) government, the first theorem asserts that there are an “excessive”
number of firms at the free-entry quasi-Cournot equilibrium vis-à-vis the “first-best”
number of firms. The second theorem asserts that the main message of the first theorem
essentially survives even if we presuppose a “second-best” government, which lacks the
leverage of optimal price regulation, instead of an omnipotent “first-best” government.
In concluding this chapter, several remarks seem to be in order.

Remark 1. Our excess theorems are proved on the basis of a standard quasi-Cournot
oligopoly model satisfying the stability conditions of Hahn [4] and/or Seade [11; 12]. As
Seade himself observed, several counter-intuitive results on entry into a Cournot market
hold true only when the Cournot equilibrium is unstable. But the same charge cannot
be raised against our excess entry theorems, which go counter to the widespread belief
of the welfare-improving effects of increasing competitiveness.

Remark 2. Somewhat surprisingly, there are not many attempts in the literature to
examine the second-best performance of the quasi-Cournot market. Harris [5] is a possible
exception. Note, however, that Harris is concerned with the direct governmental control
of the production decisions by private firms, subject only to the constraint that all firms
are to be assured of non-negative profit, in pursuit of the maximization of the market
surplus function. In contrast, our second-best notion presupposes that the government
is deprived of any direct control over the behaviour of firms, leaving them to follow their
own private incentives. Care should be taken with this contrast in comparing our results
with those of Harris [5].

Remark 3. How does the first-best number of firms nf compare with the second-best
number of firms ns(µ)? We show in the Appendix that no definite ranking is to be
expected in general between nf and ns(µ). In contrast, the second-best number of firms
in the sense of Harris [5] either coincides with or is less than the first-best number of
firms, the difference in the latter case being exactly one.

Remark 4. Throughout this chapter, we have followed a convention of treating the
number of firms as a continuous variable. As a matter of fact, the continuous variables
ne(µ), nf and ns(µ) are to be regarded as continuous proxies to the discrete variables
Ne(µ), Nf and Ns(µ), which are defined by Ne(µ) = [ne(µ)], Nf = [nf ] (resp. [nf ] + 1)
if Wf ([nf ]) ≥ Wf ([nf ] + 1) (resp. Wf ([nf ]) < Wf ([nf ] + 1)), and Ns(µ) = [ns(µ)] (resp.
[ns(µ)] + 1) if Ws([ns(µ)]) ≥ Ws([ns(µ)] + 1) (resp. Ws([ns(µ)]) < Ws([ns(µ)] + 1)),
where [n] denotes the greatest integer that does not exceed n. Therefore, a qualification
should be made to our excess entry theorems to the following effect: Although ne(µ) >
max {nf , ns(µ)} holds true quite strenuously, Ne(µ) may still fall short of Nf and/or
Ns(µ) by the margin of at most one, reflecting the above-noted integer problems.

Remark 5. A final remark on the background of our interest in the problem at hand
might not be out of place. Throughout the post-war period, a guiding principle of
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Japanese industrial policy has been the regulation of so-called “excessive competition”.
To the extent that the meaning of this key concept has not been made precise, the debates
on industrial organization and industrial policy have been rather cloudy to say the least.
It is our hope that the analyses in this chapter will help crystallize a possible meaning
of this strategic concept, thereby contributing to a more fruitful communication in the
future.10

Appendix

1. Uniqueness and Stability of ne(µ)

The equilibrium number of firms ne(µ) is defined by π(ne(µ), µ) = 0, where π(n, µ) is
given by (29). In view of (30), the uniqueness of ne(µ) is clear.

Let nt := n(t, n0) be the solution of the differential equation (15), where n0 denotes
the initial value of n. Define the distance between the solution path {nt := n(t, n0) | 0 ≤
t < +∞} and the equilibrium number of firms ne(µ) by Vt := 1

2
{nt − ne(µ)}2. It is clear

that

V̇t = {nt−ne(µ)}ṅt = β{nt−ne(µ)}π(nt, µ). (1∗)

By virtue of (30), π(nt, µ) > 0, = 0, or < 0 according as nt < ne(µ), = ne(µ), or > ne(µ).
It then follows that V̇t < 0 as far as nt 6= ne(µ), whereas V̇t = 0 obtains if and only if
nt = ne(µ). Therefore, limt→∞ n(t, n0) = ne(µ) is guaranteed. ‖

2. Proof of Lemma 1

(a) For any n, we define two functions gn(z) := f(nz) − C ′(z) and hn(z) := f(nz) −
C ′(z) + µzf ′(nz) of z. By virtue of Assumptions A1 and A2, µzf ′(nz) < 0 for all
z > 0, so that we have gn(z) > hn(z) for all z > 0. By definition of z∗(n) and z(n, µ),
we obtain gn(z∗(n)) = hn(z(n, µ)) = 0. Furthermore, Assumptions A2 and A4 entail
g′n(z) = (n−µ)f ′(nz)+µf ′(nz)−C ′′(z) < 0, which is sufficient to ensure the uniqueness
of z∗(n) and the inequality z∗(n) > z(n, µ).
(b) Differentiating (6) with respect to µ, we may easily verify that

zµ(n, µ) :=
∂

∂µ
z(n, µ) = − z(n, µ)

µ{E(Q(n, µ)) + m + K(n, µ)} (2∗)

holds true, which is negative by virtue of (10) and (11). ‖

3. Proof of Lemma 2

10The interested readers are referred to Okuno and Suzumura [8] for our analysis of industrial policy.
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Differentiating (16) with respect to µ, and taking (6) for n = ne(µ) into consideration,
we obtain

n′e(µ) = − zµ(ne(µ), µ)

z(ne(µ), µ) + {ne(µ)− µ}zn(ne(µ), µ)
. (3∗)

Substituting (2∗) and (20) for n = ne(µ) into (3∗) and simplifying, we obtain

n′e(µ) = −zµ(ne(µ), µ)me{E(Qe) + me + Ke}
z(ne(µ), µ){meKe + E(Qe) + me} , (4∗)

where E(Qe) := E(Q(ne(µ), µ)),me := ne(µ)/µ and Ke := K(ne(µ), µ). By virtue of
(10) and (11) for n = ne(µ), (2∗), (20) and (4∗) ensure that n′e(µ) > 0 holds true for all
µ > 0. ‖

4. Proof of Theorem 1

To begin with, we prove that ne(0) := limµ→0 ne(µ) exists and it satisfies ne(0) = nf .
Note that

z(ne(µ), µ) < z∗(ne(µ)) ≤ z∗(1) (5∗)

holds true by virtue of Lemma 1(a), z′∗(n) < 0 and the Assumption (ii). Note also
that (d/dµ)z(ne(µ), µ) = zn(ne(µ), µ)n′e(µ) + zµ(ne(µ), µ) < 0 holds true, where use is
made of Lemma 2. Therefore, when µ decreases toward 0, z(ne(µ), µ) increases. Since
{z(ne(µ), µ)} is bounded from above by z∗(1), limµ→0 z(ne(µ), µ) = z(limµ→0 ne(µ), 0)
exists. Let ne(0) := limµ→0 ne(µ). Consider (6) for n = ne(µ) and let µ converge to 0 to
obtain

f(ne(0)z(ne(0), 0)) = C ′(z(ne(0), 0)), (6∗)

where use is made of Assumptions A2 and A5∗. In view of (18), (6∗) may be rewritten
as

f(ne(0)z∗(ne(0))) = C ′(z∗(ne(0))). (7∗)

Next, we let µ converge to 0 in (16) and take (18) into consideration to obtain

f(ne(0)z∗(ne(0)))z∗(ne(0)) = C(z∗(ne(0))). (8∗)

Coupled with (7∗), (8∗) yields ne(0) = nf , as desired.
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Suppose now that nf ≥ ne(µ) were true for some µ > 0. By virtue of Lemma 2, we
then obtain nf ≥ ne(µ) > ne(0) = nf , which is a contradiction. Therefore, nf < ne(µ)
must be the case for all µ > 0 satisfying ne(µ) > max {1, µ}, as was to be shown. ‖

π(n, 0), π(n, µ), ξ(n, µ)

0
n

ξ′(n, µ)

ξ(n, µ)

ne(µ)

ns(µ)

n′s(µ)

nf

π(n, 0)
π(n, µ)

Figure 1
Comparison of n, ns(µ) and ne(µ)

5. Comparison between nf and ns(µ)

Note that nf , ns(µ) and ne(µ) are characterized by π(nf , 0) = 0, π(ns(µ), µ) = ξ(n, µ)
and π(ne(µ), µ) = 0, respectively, where π(n, µ) is defined by (29) and ξ(n, µ) is defined
by

ξ(n, µ) := −µ{z(n, µ)}2f ′(nz(n, µ))
E(Q(n, µ)) + m

E(Q(n, µ)) + m + K(n, µ)
, (9∗)

which is positive under our assumption. Note also that (30) guarantees that (∂/∂n)π(n, µ)
< 0, whereas Lemma 1(b) guarantees that

∂

∂µ
π(n, µ) = (n−µ)z(n, µ)f ′(Q(n, µ))zµ(n, µ) > 0. (10∗)
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We now draw the graphs of π(n, 0), π(n, µ) and ξ(n, µ) for fixed µ > 0. As may easily be
observed, ne(µ) > nf and ne(µ) > ns(µ) hold true generally, whereas ns(µ) may exceed
or fall short of nf depending on the relative position of ξ(n, µ) vis-à-vis π(n, µ). ‖
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[17] von Weizsäcker, C. C., “A Welfare Analysis of Barriers to Entry,” Bell Journal of
Economics 11, 1980, 399-420.
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Chapter 18
Oligopolistic Competition and Economic

Welfare: A General Equilibrium Analysis of
Entry Regulation and Tax-Subsidy Schemes∗

1 Introduction

The purpose of this chapter is to make two contributions to the general equilibrium
analysis of an oligopolistic economy with free entry.

First, we establish a general equilibrium extension of the excess entry theorem due
to Mankiw and Whinston [13] and Suzumura and Kiyono [19], which establishes in a
partial equilibrium framework that a marginal decrease in the number of oligopolistic
firms from the free-entry equilibrium level improves economic welfare. As is generally
recognized, the advantage of using a partial equilibrium analysis lies in its simplicity,
which enables us to crystallize a new theoretical insight. Since the new insight rendered
by the excess entry theorem is somewhat paradoxical, it is reassuring that the theorem
is essentially kept intact even in the presence of general equilibrium interactions. Indeed,
the partial equilibrium verdict on the welfare effect of entry regulation in a free-entry
oligopolistic economy is preserved in a general equilibrium setting if the oligopolistic
sector uses the same factor more intensively than the competitive sector in the average
as well as marginal sense.

Note, however, that the excess entry theorem may be criticized in that a democratic
government may lack sufficient leverage enabling it to impose direct entry regulation.
Therefore it is interesting to seek other types of government policy instruments than
direct entry regulation. With this purpose in mind, the second task of this chapter is
to explore tax-subsidy schemes which guarantee an unambiguous Pareto improvement.
Recall that the introduction of a tax-subsidy scheme into a perfectly competitive economy
necessarily harms at least one economic agent, unless it is of the lump-sum variety. In

∗First published in Journal of Public Economics, Vol.42, 1990, pp.67-88 as a joint paper with H.
Konishi and M. Okuno-Fujiwara. The authors are grateful to Professor Anthony Atkinson, the Editor
and two anonymous referees of Journal of Public Economics for their helpful comments. Financial
support through a Grant-in-Aid for Scientific Research from the Minisitry of Education, Culture, Sports,
Science and Technology of Japan is gratefully acknowledged.
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contrast, the introduction of a tax-subsidy scheme can be welfare-improving if the market
economy is imperfectly competitive. However, knowing that a tax-subsidy scheme can
be welfare-improving is quite different from knowing when and precisely what kind of
tax-subsidy scheme is warranted to be welfare-improving. It is interesting to identify
several self-financing tax-subsidy schemes that guarantee Pareto improvement for sure,
and this is precisely what we intend to accomplish.

At this juncture, some remarks on the related literature might be in order. In a
partial equilibrium framework, Katz and Rosen [9] as well as Seade [17] analysed the
issue of tax-shifting in oligopolistic competition, whereas the general equilibrium analysis
of the incidence of a corporate profit tax in an imperfectly competitive economy was
pioneered by Anderson and Ballentine [1], and analysed further by Atkinson and Stiglitz
[2, Chapter 7]. Their analyses differ from ours in several essential respects. First, unlike
ours, Anderson and Ballentine analysed the “short-run” incidence and welfare effect
of corporate profit tax, where by “short-run” is meant that they fixed the number of
Cournot oligopolists. Second, Atkinson and Stiglitz analysed the model of monopolistic
competition à la Dixit and Stiglitz [5], which subsumes our model of homogenous product
oligopoly as a special case. Note, however, that they focused on a simplified case (γ = 0 in
their notation) where the price-cost margin remains the same regardless of any change in
exogenous environment because the residual demand of each and every firm has constant
and identical elasticity. On the other hand, the price-cost margin is endogenous in our
model, which enables us to analyse the welfare effects through prices as well as through
other routes. Despite the formal generality, therefore, their model does not necessarily
cover the area which our analysis focuses on. Besides, our focus is on the “short-run” as
well “long-run” welfare implications of various policies in contrast with their exclusive
concern with the “long-run” incidence of corporate taxation.1

2 The Model

We consider a closed economy which consists of two sectors producing two goods, X and
Y , using two factors of production, capital and labour. The endowment of these factors is
fixed exogenously, and factors are freely mobile between two sectors. Good X is produced
under increasing returns to scale due to the existence of fixed costs, which makes industry
X oligopolistic. For simplicity, we assume that all firms in industry X are identical and
behave as Cournot-Nash quantity competitors, so that we can work with the symmetric
Cournot-Nash equilibrium. Good Y is competitively produced under constant returns to
scale. We also simplify our model by supposing a single representative consumer, whose

1In what follows, we shall focus on the welfare effects of a change in the number of firms. In analysing
these effects, a crucial factor is the price-cost margin which reflects the monopoly power of the firms.
Using the Atkinson-Stiglitz framework with γ = 1, however, one cannot meaningfully analyse these
effects as the price-cost margin remains the same even if the number of firms changes. On the other
hand, the Atkinson-Stiglitz framework is quite suitable for analysing the welfare effects of a change in
the number of products. See also, Besley and Suzumura [3], Myles [14], Robinson [15, Chapter 5], and
Stern [18], among others, for different aspects of tax and welfare analyses in an oligopolistic economy.
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welfare is the central focus of our analysis. The consumer’s income is taken as numeraire.
Moreover, we confine our attention to the “long-run” equilibrium where entry and exit
are free in the oligopolistic sector as well as in the perfectly competitive sector. This
completes our informal description of the model.

2.1 Representative Consumer

Let V (pX , pY ) be the indirect utility function of the representative consumer, where
pX (resp. pY ) denotes the price of X (resp. Y ) and the consumer’s income is taken as
numeraire. We assume quasi-linearity of her preference for simplicity, which enables us
to write the inverse demand function for X as:

pX = pY φ(X), φ′(X) < 0.2 (2.1)

Moreover, for expositional convenience, the price elasticity of demand for X, denoted by
ε, is assumed to be constant, i.e.,

ε = − φ(X)

Xφ′(X)
= const.3 (2.2)

2.2. Industry Y

Industry Y consists of perfectly competitive firms producing Y under constant returns
to scale. Let g(w, r) stand for the unit cost function of the representative firm, where r
and w are, respectively, the rental rate of capital and the wage rate. Needless to say, g
is homogeneous of degree one. The price of Y being pY , we should have

pY = g(w, r) (2.3)

at equilibrium. Industry Y is assumed to be an untaxed sector.

2.3. Industry X

Industry X consists of identical and oligopolistically competitive firms. Let the before
tax-subsidy cost function of each firm be

C∗(q; w, r) = m∗(w, r)q + F ∗(w, r), (2.4)

where q is each firm’s output of good X. Clearly, m∗(w, r) and F ∗(w, r) denote, re-
spectively, the marginal cost and fixed cost functions which are homogeneous of degree

2Quasi-linearity is a strong assumption which makes our analysis close to partial equilibrium analysis.
However, this setup still allows us to discuss the crucial general equilibrium adjustment in factor markets
in a straightforward way. In fact, weakening quasi-linearity to homotheticity will not alter any essential
results of this chapter as we showed in Konishi, Okuno-Fujiwara and Suzumura [11]. This paper is
available to any interested reader on request.

3The assumption of constant elasticity is made only for simplifying our presentation. Our results are
valid even without this assumption as is clear from Konishi, Okuno-Fujiwara and Suzumura [11].
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one. Since we are concerned with the “long-run” analysis of the oligopolistic economy
where firms enter into and exit from the oligopolistic sector, there is no sunk cost in our
economy.

In this chapter, we examine the welfare effects of various infinitesimal tax-subsidy
schemes applied to the oligopolistic industry, which are represented in terms of the fol-
lowing parameters:

s = production subsidy per unit output,
sw = rate of subsidy on the wage expenditure component of marginal cost,
sr = rate of subsidy on the capital expenditure component of marginal cost,
t = lump-sum subsidy,
tw = rate of subsidy on the wage expenditure component of fixed cost,
tr = rate of subsidy on the capital expenditure component of fixed cost.

Note that each of s, sw, sr, t, tw and tr can be negative. If this is in fact the case, we
are referring to a tax rather than to a subsidy. By the use of vector notation, let S =
(s, sw, sr, t, tw, tr) be the overall tax-subsidy scheme, which is partitioned into the tax-
subsidy scheme on the marginal cost part s = (s, sw, sr) and that on the fixed cost part
t = (t, tw, tr).

Under the given tax-subsidy scheme, we can redefine the after tax-subsidy cost func-
tion for X industry firms:

C(q; w, r,S) = m(w, r, s)q + F (w, r, t),

where m(w, r, s) = m∗(w − sw, r − sr)− s, and F (w, r, t) = F ∗(w − tw, r − tr)− t.
Throughout this chapter, we assume that the X industry is in Cournot-Nash compe-

tition in quantities. It follows that each firm solves the problem:

max
q>0

{pY φ(X−i + q)q−m(w, r, s)q−F (w, r, t)}, (2.5)

taking the total output of other firms X−i, the price pY of good Y , and that of production
factors (w, r), and the tax-subsidy scheme S as given. The first-order condition for profit
maximization becomes:

pY φ(X)

{
φ′(X)

φ(X)
q + 1

}
= m(w, r, s).

Under the assumption of identical firms, X = nq holds at the symmetric Cournot-Nash
equilibrium if there are n firms operative in industry X.

Using (2.2) and (2.3), we can derive the following equilibrium condition in industry
X:

φ(nq)

(
1− 1

nε

)
=

m(w, r, s)

g(w, r)
, (2.6)

where n > 1/ε should be satisfied for the internal equilibrium solution to exist.
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We also assume that entry and exit are free in industry X and focus on a “long-run”
equilibrium of the economy. Thus, the output level of each firm and the number of firms
in industry X are important determinants of the allocative efficiency of the economy.

The equilibrium number of firms is determined by the break-even condition. By virtue
of (2.3), this condition is reduced to:

φ(nq)q =
m(w, r, s)

g(w, r)
q +

F (w, r, t)

g(w, r)
. (2.7)

The integer problem on the equilibrium number of firms is assumed away following the
customary practice in the literature (e.g. see Seade [16], and Suzumura and Kiyono [19]).

2.4. Consumer’s Income

Recollect that the income of the representative consumer is taken as numeraire. Let
K (resp. L) be the fixed supply of capital (resp. labour). Profit earned in industry X,
if any, is distributed to the consumer. The resources, which are required to substantiate
a tax-subsidy scheme, are collected from the representative consumer in a lump-sum
fashion. When tax is collected from the oligopolistic sector, its revenue is distributed
to the consumer in the same manner. Let T be the lump-sum subsidy (or tax if it is
negative):

T = n{(s + swmw + srmr)q + (t + twFw + trFr)}.

In the above expression, partial derivatives of the cost functions coincide with the levels
of factor utilization in the marginal and fixed cost parts by virtue of Shephard’s lemma.4

Finally, the normalization of the consumer’s income implies:

wL + rK + n{g(w, r)φ(nq)q−m(w, r, s)q−F (w, r, t)}− T = 1. (2.8)

Note that the third term on the LHS is equal to zero at equilibrium.

2.5. Factor Market Equilibrium

Capital and labour are allocated between industries through the adjustment of rental
and wage rates. Both factor markets are assumed to be perfectly competitive. By the
use of Shephard’s lemma, total factor use in each industry can be written as:

KX = mr(w, r, s)X + nFr(w, r, t), LX = mw(w, r, s)X + nFw(w, r, t),

KY = gr(w, r)Y , LY = gw(w, r)Y,

and the market-clearing conditions become:

4Throughout this chapter, a subscript to a function signifies partial differentiation with respect to the
specified variable. For example, if the relevant function is given by f(x, y), we denote fx = ∂f/∂x, fxy =
∂2f/∂x∂y, and so on.
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KX + KY = K, (2.9)

LX +LY = L. (2.10)

The above six equations, (2.3) and (2.6)-(2.10), complete the general equilibrium
system of our economy. The market-clearing condition for good Y is omitted because of
Walras’s law. There are six unknowns, s, q, n, pY , Y , w and r.

3 Welfare Criterion

In order to analyze this system, we first define the welfare criterion, which is the basis
for evaluating the entry regulation policy and the tax-subsidy schemes to be examined
later.

The welfare of the representative consumer is written as:

V (pX , pY ) = V (g(w, r)φ(nq), g(w, r)). (3.1)

Total differentiation of (3.1) yields:

1

λ
dV = −g(w, r)Xφ′(X)dX−{Xφ(X)+Y }(gwdw+grdr), (3.2)

where use is made of Roy’s Identity and λ represents the marginal utility of income
(λ > 0).

In addition, total differentiation of (2.8) tells us that changes of variables are restricted
by the following relation because of the normalization of the consumer’s income:

{L− n(mwq + Fw) + φ(X)XXgw}dw+

{K − n(mrq + Fr) + φ(X)XXgr}dr

+g(w, r)φ′(X)X(dX − dq) = 0, (3.3)

where (2.6) and (2.7) are applied. Note that the terms relating to the tax-subsidy param-
eters do not appear here because we are concerned only with the infinitesimal tax-subsidy
schemes. Substituting (2.9) and (2.10), we can convert (3.3) into:

{Y +φ(X)X}(gwdw+grdr)+g(w, r)φ′(X)X(dX−dq) = 0. (3.4)

Thus, using the restriction (3.4), we obtain the following welfare criterion in our
economy:

1

λ
dV = −g(w, r)Xφ′(X)dq. (3.5)

The following useful theorem is now established:
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Theorem 1 (Welfare criterion). The necessary and sufficient condition for a change
in the number of oligopolistic firms and/or the introduction of an infinitesimal tax-
subsidy scheme to be welfare-improving is that it induces an increase in the output of
each oligopolistic firm.

The assertion of this theorem is intuitively clear. In a free-entry oligopolistic economy,
average cost, which equals product price, exceeds marginal cost, which equals marginal
revenue, so that there remain unexploited increasing returns. Hence, it is socially bene-
ficial to expand the scale of production of each firm in the oligopolistic industry.

4 Perturbation of the General Equilibrium System

In this section we analyse our general equilibrium system using the so-called hat-calculus
and derive the relations which must hold at equilibrium among the output levels of each
oligopolistic firm, the number of firms in the oligopolistic sector, and the relative factor
price.5 This is a customary procedure in the literature of tax incidence pioneered by
Harberger [6].6 To begin with, we examine the effect of a change in the number of firms,
and later we investigate the effect of the introduction of a tax-subsidy scheme.

Consider (2.6), which is the Cournot- Nash equilibrium condition in industry X, and
assume S = 0. The RHS of (2.6) shows the relative marginal cost of industry X to
that of industry Y . It is well known that the relative factor intensity between the two
industries plays a central role in determining the relation between ω, the wage-rental
ratio w/r, and the value of the RHS of (2.6); if the marginal cost part of industry X is
more capital intensive than industry Y , an increase in ω decreases the value of the RHS,
and vice versa.

The LHS of (2.6), in turn, represents the marginal revenue of the oligopolistic sector
in terms of the good Y . Clearly, it depends on the equilibrium number of firms as well as
the equilibrium output level of each oligopolistic firm. Using the hat-calculus, we obtain
the following equation of change:

−1

ε
q̂ − (n− 1)ε− 1

ε(nε− 1)
n̂ = m̂− ĝ.

Let us now introduce a crucial assumption on the strategic behavior of oligopolists:
output levels are strategic substitutes . The property of strategic substitutes, first formu-
lated by Bulow et al . [4], corresponds to the downward-sloping reaction curve for each
oligopolistic firm, or equivalently, the negative partial derivative of the marginal revenue
with respect to the output chosen by other firms. It is well known that the strategic
substitutes property is a natural requirement when oligopolistic competition is in terms
of quantities.

Note that the LHS of (2.6) is decreasing in q because of the second-order condition of
profit maximization. Moreover, in our formulation, an increase in the number of firms will

5For any variable x, we denote x̂ = dx/x.
6See also Atkinson and Stiglitz [2] and Kotlikoff and Summers [12] for useful surveys.
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induce, ceteris paribus , an increase in other firms’ output. The assumption of strategic
substitutes, then, implies that the LHS of (2.6) is decreasing in n. Thus, the assumption
of strategic substitutes and the existence of an internal solution imply that the number
of firms, n, must satisfy n > 1 + 1/ε at the symmetric free-entry equilibrium.

The implied relation (q̂, n̂, ω̂) in (2.6) is now reduced to:

−1

ε
q̂−αn̂+AθMω̂ = 0, (4.1)

where A = (wr/c)mwLY > 0, α = {(n − 1)ε − 1}/ε(nε − 1) > 0, and θM = (mr/mw) −
(KY /LY ).7 θM denotes the difference in marginal capital intensity between two industries.
If θM is positive (resp. negative), industry X’s marginal cost is more capital (resp. labour)
intensive than industry Y . Hence, an increase in the wage-rental ratio expands (resp.
contracts) the output of each oligopolist if industry X is marginally more capital (resp.
labour) intensive than industry Y . On the other hand, other things being equal, an
increase in the number of firms in industry X reduces the output of each oligopolistic
firm, regardless of the sign of θM.

Next, we apply the same procedure as above to the break-even condition (2.7) of
industry X. The RHS thereof being the total cost of an oligopolistic firm in terms of
the good Y , the value of the RHS determines the overall factor intensity. The implied
relation of (q̂, n̂, ω̂) becomes:

−(1/ε)X̂ + q̂ = (mq/C)q̂ + (wr/C)LY LX{(KY /LY )− (KX/LX)}ω̂.

By the use of (2.6), mw/C = 1− 1/ε, so that the above relation is reduced to:

−n− 1

ε
q̂− 1

ε
n̂+BθAω̂ = 0, (4.2)

where B = (wr/Cg)LY LX > 0 and θA = KX/LX − KY /LY . θA denotes the difference
in average capital intensity between two industries.8 If it is positive, industry X is
overall more capital intensive than industry Y , and vice versa. Note that the average
capital intensity is equal to the marginal intensity in industry Y because the industry
is under constant returns to scale. By (4.2), if industry X is overall more (resp. less)
capital intensive than industry Y , other things being equal, an increase in the output
of each oligopolistic firm decreases the number of firms in industry X, and a rise in the
wage-rental ratio induces new entry into (resp. exit from) industry X.

Finally, we must derive the factor market equilibrium relation of (q̂, n̂, ω̂), which is
obtained by totally differentiating (2.9) and (2.10), and then eliminating dY . Since the
calculation procedure is rather complicated, we shall state only the final result in the
main text, relegating a detailed derivation to appendix A:

λMq̂ + λAn̂ + ∆ω̂ = 0, (4.3)

7Note that, in the derivation of (4.1), the homogeneity property of the cost function is used.
8The distinction between marginal and average factor intensity is due originally to Jones [8].
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where λM and λA are positively related to the difference in marginal and average fac-
tor intensities, θM and θA, respectively. ∆ represents what is usually called the factor
substitution term and is always positive.

When the number of firms is fixed, interpretation of (4.3) is familiar in the theory of
international trade and/or that of tax incidence. If in need, the reader is referred to the
pioneering paper on the two-sector general equilibrium model by Jones [7].

Consider an increase in the wage-rental ratio. It induces firms in both industries
to choose more capital-intensive technology, which brings about excess demand in the
capital market and excess supply in the labour market. For both factor markets to
clear, the output of the capital-intensive industry must decrease and that of the labour-
intensive industry increase; this is the renowned Rybczynski theorem. In our context,
if industry X is marginally more capital intensive, the output of each oligopolistic firm
must decrease, and vice versa.

What is rather unfamiliar in (4.3) is the effect of an increase in the number of firms on
the output of each oligopolistic firm under a constant wage-rental ratio. This depends not
only on the difference in marginal factor intensities, but also on that in average factor
intensities between industries. Let us say that there exists a factor intensity twist in
industry X when θM and θA are of opposite signs.9 Figure 1(a) depicts the box diagram
describing factor utilizations when there is no factor intensity twist at the given wage-
rental ratio. Note that, in this figure, industry X is assumed to be overall more capital
intensive than industry Y .

In Figure 1(a), E denotes the initial equilibrium. OX and OY denote the origin of
industry X and industry Y , respectively. Factor utilization of industry X, represented
by the vector OXE, can be decomposed into the fixed cost part and the marginal cost
part:

(KX , LX) = (mr,mw)X + (Fr, Fw)n.

In this figure, OXF corresponds to the fixed cost part and FE to the marginal cost part.
The slopes of both OXE and FE are steeper than that of OY E, reflecting the assumption
of no factor intensity twist.

Now consider an increase in the number of firms in industry X. New equilibrium
will occur at E ′, where factor utilization in the fixed cost part is expanded to OXF ′.
However, if the production level of each oligopolistic firm were to remain the same as
before, industry X would utilize factors of OXG. Hence, an increase in the number of
firms leads to a fall in the output of oligopolists in industry X.

Figure 1(b) depicts the case with a factor intensity twist; the slope of OY E is between
those of OXE and FE. An increase in the number of firms changes the equilibrium from
E to E ′ and the individual output level of the oligopolists increases, because F ′G < F ′E ′.

9The crucial role played by the absence of the factor intensity twist was recognized by Atkinson and
Stiglitz [2, Chapter 7] as well, although the name is not theirs.
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5 Excess Entry Theorem

We are now ready to solve the equations of change, (4.1)-(4.3), and investigate the welfare
effects of entry regulation.

Suzumura and Kiyono [19], using a partial equilibrium framework, examined the
welfare effects of entry regulation in a free-entry (quasi-) Cournot oligopoly with fixed
cost. They showed that a reduction in the number of firms leads to welfare improvement
when the only available policy tool is the control of the number of firms. This result
critically hinges on the assumption of strategic substitutability. Under this assumption,
a reduction in the number of firms gives rise to an increase in the equilibrium output of
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each oligopolistic firm, which leads to a fall in the average cost of oligopolists due to the
existence of unexploited increasing returns to scale.

However, a partial equilibrium result may not hold in a general equilibrium setting
in general. One of the major aims of this chapter is to show under what conditions entry
regulation assures welfare improvement when we pay due attention to the general equi-
librium interactions. In view of Theorem 1, we need only to know a sufficient condition
for the output of each oligopolistic firm to increase when the number of firms is reduced
marginally from the free-entry equilibrium level. Under entry regulations, n is fixed and
the relation (4.2) no longer holds. Solving (4.1) and (4.3), we obtain:

q̂ = − 1

Ω
(α∆ + AλAθM)n̂, (5.1)

where Ω = (1/ε)∆ + AλMθM > 0. Thus, barring a factor intensity twist, a marginal
reduction in the number of firms from the free-entry equilibrium level increases individual
output in the oligopolistic sector. Invoking Theorem 1, we obtain:

Theorem 2 (Excess entry theorem in general equilibrium). Suppose that strategic substi-
tutability and no factor intensity twist hold. Then a marginal reduction in the number of
oligopolistic firms from the free-entry equilibrium level unambiguously improves economic
welfare.

Diagrammatical exposition of Theorem 2 is given in Figure 2, which depicts the case
of θM, λM > 0.

The downward-sloping schedule FF and the upward-sloping schedule PP are the
implied relation of (q, ω) in the factor market (4.3) and that in the product market (4.1)
with the assumption that n̂ = 0, respectively. The initial free-entry equilibrium is shown
by E in the figure. When the number of firms in industry X is reduced marginally, the
PP schedule moves to the right by the assumed strategic substitutability. The shift of
the FF schedule depends on whether or not the factor intensity twist exists. If there is
no factor intensity twist and θA, λA > 0, the FF schedule also moves to the right. It
follows that an increase in q is always assured.

However, when there is a twist and θA, λA < 0, the response via factor markets to a
reduction in the number of oligopolistic firms counteracts the expansion of the individual
oligopolist’s output. This is because a reduction in the number of firms induces a change
in the wage-rental ratio which worsens the marginal cost condition in industry X relative
to that in industry Y . Thus, without the factor intensity twist, equilibrium moves to E ′

and an increase in q is entailed, but equilibrium may move to E ′′ and q may decrease
with the factor intensity twist. The case of θM, λM < 0 can be examined similarly; we
have only to notice that the relative position of the FF and PP schedules are reversed.
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In concluding this section, note that the relevance of Theorem 2 to the effect that re-
stricting competitiveness of the oligopolistic sector directly would contribute to improve
welfare may well be suspect, since it may be doubted how the government can directly
regulate the number of firms in the oligopolistic sector. Assuming that the government
leverage against private incentives is indeed too weak to implement direct entry regula-
tion, can we instead design tax-subsidy schemes which can induce welfare improvement
indirectly? We now turn to this problem.

6 Welfare-Improving Tax-Subsidy Schemes

To analyse the effect of a tax-subsidy scheme in our model, the equations of change
(4.1), (4.2) and (4.3) must be modified to include the tax-subsidy parameters. In order
to avoid unnecessary complications, we will modify the equations of change with a familiar
theoretical apparatus, the formal derivation of which being relegated to appendix A.

The Cournot-Nash equilibrium condition (4.1) in industry X will be modified by the
introduction of tax-subsidy parameters as:

−1

ε
q̂−αn̂+AθMω̂ =

1

m
mS·dS, (6.1)

where mS = − (1,mw,mr; 0, 0, 0) and dS= (ds, dsw, dsr, dt, dtw, dtr). It is clear from
(6.1) that subsidies (resp. taxes) on the marginal cost increase (resp. decrease) the
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equilibrium output of each oligopolistic firm when the number of firms and factor prices
are fixed.

Similarly, (4.2) can be modified by introducing tax-subsidy parameters as:

−n− 1

nε
q̂− 1

ε
n̂+BθAω̂ =

1

C
CS ·dS, (6.2)

where CS = − (q, qcw, qcr; 1, Fw, Fr). It follows from (6.2) that a cost reduction (resp.
increase) in the oligopolistic sector induced by government subsidies (resp. taxes) brings
about an increase (resp. decrease) in the number of firms when the individual output
level and factor prices are fixed.

The effects of the introduction of taxes and subsidies into factor markets are familiar
in the theory of tax incidence. For example, the number of firms and the output level
of each oligopolistic firm being fixed, a subsidy on the labour use in industry X, which
brings about the factor substitution effect to cause excess demand in the labour market
and excess supply in the capital market, increases the wage-rental ratio, and so forth.
Formally, the modified equation of change in the factor market equilibrium becomes:

λMq̂ + λAn̂ + ∆ω̂ = − β · dS, (6.3)

where β = (0, (1/w)∆M,− (1/r)∆M; 0, (1/w)∆F,− (1/r)∆F). ∆M and ∆F represent what
we may call the substitution terms in the marginal cost and the average cost part, re-
spectively. They are proved to be always positive.10 Clearly, the production subsidy
and the lump-sum subsidy do not directly affect the factor market equilibrium. Since
we are concerned only with the introduction of infinitesimal tax-subsidy schemes, the
signs of λM and λA correspond to those of θM and θA, respectively.11 Enumeration of the
modified equations of change being now complete, we are ready to examine the welfare
implications of several tax-subsidy schemes.

Consider the simultaneous equation system for (q̂, n̂, ω̂) defined by (6.1), (6.2) and
(6.3):



−(1/ε) −α AθM

−(n− 1)/nε −(1/ε) BθA

−λM −λA −∆







q̂
n̂
ω̂


 =




(1/m)mS

(1/C)CS · dS
−β · dS


 (6.4)

and let H denote the determinant of the coefficient matrix in (6.4), i.e.

H = −1

ε

(
1

ε
∆ + BθAλA

)
+

n− 1

nε
(α∆ + AθMλA)− λM

(
−αBθA +

1

ε
AθM

)
.

10A formal derivation of (5.3) is contained in Appendix A.
11For the introduction of non-infinitesimal tax-subsidy schemes, see Atkinson and Stiglitz [2, Chapter

5] and the papers cited there.
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We prove in appendix B that the general equilibrium system is locally stable if H < 0.
The rest of the analysis proceeds under this assumption of local stability.

Solving (6.4) for q̂, we obtain:

q̂ =
∆ + εBθAλA

εcH
·mS · dS − α∆ + AθMλA

CH
· CS · dS

−AθM − αεBθA

εH
· β · dS. (6.5)

From the above equation we can see how tax-subsidy schemes affect the equilibrium
output level of each oligopolistic firm. The effect in question can be decomposed into
three general equilibrium effects, each corresponding to a term in (6.5). We call them the
marginal cost effect , the total cost effect , and the factor substitution effect , respectively,
in accordance with the order of appearance in (6.2).

The marginal cost effect refers to the coefficient of mS · dS which is always negative.
Therefore, other things being equal, a tax-subsidy scheme which brings the marginal
cost down induces an expansion in the individual output of the oligopolistic firm. It is
intuitively clear within a partial equilibrium framework that a reduction in the marginal
cost increases the output of each oligopolist if firms are symmetric. We have thus verified
that, even when the general equilibrium interactions via factor market are taken into
account, such a partial equilibrium result remains true as long as the general equilibrium
system is locally stable.

The total cost effect refers to the coefficient of CS ·dS. Suppose that the total cost is
increased by the introduction of tax-subsidy. The effect on the output of each oligopolistic
firm is two-fold. On the one hand, the output level of each oligopolistic firm will rise
due to the exit of some firms from the oligopolistic industry (the excess entry theorem).
On the other hand, the output level is also affected by an induced change in the factor
price ratio; if industry X is more capital (resp. labour) intensive in the average sense,
the wage-rental ratio goes up (resp. down). Thus without the factor intensity twist, an
increase in individual output of the oligopolistic firm is enhanced, while it is offset or
may even be upset when there is a factor intensity twist.

Finally, the factor substitution effect refers to the coefficient of β · dS. A change in
the relative factor price through substitution between factors affects the output level of
each oligopolistic firm by changing the marginal cost condition and the number of firms.
For example, consider the effect of the introduction of a subsidy on the wage expenditure
component of marginal cost. Since it motivates the oligopolistic firms to substitute capital
for labour, the wage-rental ratio must rise so as to adjust factor markets into equilibrium.
When industry X firms are marginally more capital intensive but totally more labour
intensive than industry Y , i.e. the factor intensity twist prevails, a rise in the wage-rental
ratio necessarily expands the output of each oligopolistic firm as some firms are forced
out of the industry. Without the factor intensity twist, however, it is ambiguous whether
the output of each oligopolistic firm increases or not.

The following two observations might be in order here. First, those schemes that
reduce total cost, i.e. CS · dS< 0, may not lead to a welfare improvement, because they
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always induce new entry into industry X. Second, the total cost effect and the factor
substitution effect may conflict with each other in yielding an overall effect, for the former
gives rise to an unambiguous change in q only without the factor intensity twist, while
the latter only with it.

We say a tax-subsidy scheme is self-financing if CS · dS = 0 holds. Note also that
β · dS = 0 holds if and only if the tax-subsidy is of the lump-sum category. It then
follows from the previous remark that a tax-subsidy scheme induces an unambiguous
welfare improvement only if it is either self-financing or of the lump-sum variety.

Invoking Theorem 1, we may now assert the following:

Theorem 3 (Welfare-improving tax-subsidy schemes). Suppose that strategic sub-
stitutability, quasi-linear preferences, and local stability hold simultaneously. Then, any
tax-subsidy scheme which belongs to the following four fundamental categories is always
welfare-improving:

(1) mS · S < 0, CS · dS = 0, β · dS = 0.
(2a) mS · S < 0, CS · dS = 0, β · dS > 0 in the case of θM > 0 and θA < 0.
(2b) mS · S < 0, CS · dS = 0, β · dS < 0 in the case of θM < 0 and θA > 0.
(3) mS · S = 0, CS · dS > 0, β · dS = 0 in the case of θMθA > 0.

A typical scheme that belongs to category (1) is an infinitesimal production subsidy
accompanied by a self-financing lump-sum tax. Note that this scheme improves welfare
independent of factor intensity conditions.12

A typical scheme that belongs to category (3) is a lump-sum tax, which improves
welfare when factor intensity twist does not occur. This result is parallel to Theorem 2.
What is added to the oligopolists’ profit under entry regulation is transformed into tax
revenue for the government.

Welfare-improving tax-subsidy schemes that belong to categories (2a) and (2b) are
more complex. They guarantee welfare improvement when the factor intensity twist ex-
ists. To illustrate, consider the case where industry X is marginally more capital intensive
but totally more labour intensive [category (2a)]. Accompanied by a self-financing lump-
sum tax, the introduction of an infinitesimal labour subsidy, applied to both the fixed cost
and the marginal cost at a uniform rate, is welfare-improving; if dS = (0, dsw, 0; dt, dsw, 0)
with dsw > 0 and dt = −(qmw + Fw)dsw, it belongs to the category (2a).

Even when a self-financing lump-sum tax is not available to the government, it is
possible to construct a welfare-improving tax-subsidy scheme if the government can dis-
tinguish between factors used in the marginal cost part and the fixed cost part of the
oligopolistic production. In the case of (2a), for example, the introduction of a produc-
tion subsidy accompanied by a self-financing tax on the wage expenditure component of
the fixed costs warrants welfare improvement. An infinitesimal subsidy on the capital
expenditure component of the marginal cost accompanied by the same self-financing tax

12Although our analysis here is confined to the class of infinitesimal schemes, a combination of a
non-infinitesimal production subsidy and a self-financing lump-sum tax appears to attain the first-best
resource allocation. See Konishi [10].
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as above, also satisfies (2a). The reader is invited to examine the types of tax-subsidy
schemes which satisfy condition (2b).

7 Concluding Remarks

It goes without saying that the first-best policy in an oligopolistic economy such as ours
is to simultaneously enforce the marginal cost pricing and control the number of firms
at the optimal level. However, this first-best policy is likely to be beyond the reach of
any actual government. Still there might remain room for a second-best policy if the
government, which is unable to control prices, can nevertheless control the number of
firms to improve economic welfare.

In the first part of this chapter we re-examined and generalized the excess entry the-
orem by allowing general equilibrium interactions in the factor markets. The assumption
of strategic substitutability and of quasi-linear preferences, upon which our generalization
rests, are rather standard. Our main finding is that the validity of the theorem hinges
crucially on whether or not the factor intensity twist exists. If there is a factor intensity
twist, entry regulation in the oligopolistic sector may decrease welfare. We also noted
that such a direct entry regulation may still be beyond the reach of the government. In
the second part of this chapter we analyzed conditions for tax-subsidy schemes to be
welfare-improving.13 Our analysis delineates several types of tax-subsidy schemes which
are unambiguously welfare-improving.

We should emphasize, however, that our model is based on several drastically simpli-
fying assumptions such as Cournot-Nash quantity competition, a single consumer (ne-
glecting all the distributional issues), and the specific form of increasing returns to scale
via the existence of fixed costs. It should also be noted that identifying capital (and
wage) expenditures in marginal and fixed costs separately, which can be easily defined
in theory, may be far from obvious in reality. The robustness of our results should be
carefully examined before extracting any serious policy implications.

Appendix A: Derivation of (4.3) and/or (6.3)

We use the following notation:

Cost Shares

θM
XL (θM

XK) = wmw/m (rmr/m): marginal cost share of labour (capital) in industry
X,

θF
XL (θF

XK) = wFw/F (rFr/F ): fixed cost share of labour (capital) in industry X,
θA

XL (θA
XK) = w(mwq + Fw)/F (r(mrq + Fr)/F ): total cost share of labour (capital)

in industry X,
θY L (θY K) = wgw/g (rgr/g): cost share of labour (capital) in industry Y .

13The second-best tax-subsidy scheme, rather than welfare-improving infinitesimal tax-subsidy
schemes, is analysed in Konishi [10].
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Factor Shares

λM
XL (λM

XK) = nqmw/L (nqmr/K): share of total labour (capital) used as variable
input in industry X,

λF
XL (λF

XK) = nFw/L (nFr/K): share of total labour (capital) used as fixed input
in industry X,

λA
XL (λA

XK) = LX/L (KX/K): share of total labour (capital) used in industry X,
λY L (λY K) = LY /L (KY /K): share of total labour (capital) used in industry Y ,

Elasticities of Substitution

σM
X = − (m̂w − m̂r)/ω̂: elasticity of substitution between variable inputs in industry

X.
σF

X = − (F̂w − F̂r)/ω̂: elasticity of substitution between fixed inputs in industry X.
σY = − (ĝw − ĝr)/ω̂: elasticity of substitution in industry Y .

Total differentiation of (2.9) and (2.10) yields:

λM
XK q̂ + λA

XK n̂ + λY K Ŷ − (λM
XKθM

XLσM
X + λF

XKθF
XLσF

X + λY KθY LσY )ω̂

= λM
XKθM

XLσM
X{(1/w)dsw − (1/r)dsr}

+λF
XKθF

XLσF
X{(1/w)dtw − (1/r)dtr} (A.1)

and

λM
XLq̂ + λA

XLn̂ + λY LŶ − (λM
XLθM

XKσM
X + λF

XLθF
XKσF

X + λY LθY KσY )ω̂

= −λM
XLθM

XKσM
X{(1/w)dsw − (1/r)dsr}

−λF
XLθF

XKσF
X{(1/w)dtw−(1/r)dtr} (A.2)

respectively. Eliminating Ŷ from the above two equations, we obtain:

λMq̂ +λAn̂+∆ω̂ = − β·dS, (6.3)

where

λM = λM
XKλY L − λM

XLλY K = (1/K)λM
XLλY L{(mr/mw)− (KY /LY )},

λA = λA
XKλY L − λA

XLλY K = (1/K)λA
XLλY L{(KX/LX)− (KY /LY )},

∆ = ∆M + ∆F + λY LλY KσY ,

∆M = λM
XLλY KθM

XL + λM
XKλY LθM

XK and ∆F = λF
XLλY KθF

XL + λF
XKλY LθF

XK .

Taking dS = 0 yields (4.3) and this completes the derivation of (4.3) and (6.3).
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Appendix B: Local Stability of the System

To simplify the stability analysis, we assume that the wage and rental rates are adjusted
instantly to equate demand and supply for labour and capital, respectively. Similarly,
the market for Y is assumed to be cleared immediately. Thus, (2.3), (2.9) and (2.10)
always hold along any adjustment path. We further assume that S = 0.

We denote by ω∗, q∗ and n∗ the equilibrium values of the wage-rental ratio, the
individual output of each oligopolistic firm, and the number of firms, respectively. As-
sumptions on the adjustment process in the market for factors and for good Y warrants
that

ω − ω∗

ω∗
= − 1

∆

{
λM q − q∗

q∗
+ λAn− n∗

n∗

}
(B.1)

and

pY = g(w, r) (B.2)

hold in the neighbourhood of equilibrium.
We next define the dynamic adjustment process by:

q̇ = κ

{
φ(nq)

(
1− 1

nε

)
− m(w, r, 0)

g(w, r)

}
, (B.3)

ṅ = η

{
φ(nq)q − m(w, r, 0)

g(w, r)
q − F (w, r, 0)

g(w, r)

}
, (B.4)

where q̇ and ṅ denote the time derivative of q and n, and κ > 0 and η > 0 are adjustment
coefficients.

Linearly approximating (B.3) and (B.4) around the free-entry equilibrium and using
(B.1), we obtain:

q̇ = κ∗
{(

−1

ε
− A

∆
θMλM

)
q − q∗

q∗
+

(
− α− A

∆
θMλA

)
n− n∗

n∗

}
, (B.5)

ṅ = η∗
{(

−n∗ − 1

n∗ε
− B

∆
θAλM

)
q − q∗

q∗
+

(
−1

ε
− B

∆
θAλA

)
n− n∗

n∗

}
, (B.6)

where κ∗ = κφ(n∗q∗){1 − (1/n∗ε)} > 0 and η∗ = ηφ(n∗q∗)q∗ > 0. Observe from these
adjustment equations that the equilibrium is locally stable if

−1

ε
− A

∆
θMλM < 0

and

−H

∆
=

(
−1

ε
− A

∆
θMλM

)(
−1

ε
− B

∆
θAλA

)
−

(
− α− A

∆
θMλA

)
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×
(
−n∗ − 1

n∗ε
− B

∆
θAλM

)
> 0.

The first inequality is always satisfied. Hence, H < 0 is sufficient for the local stability
of equilibrium, as was to be verified.14

14Note that the asterisks are omitted in the main text.
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Chapter 19
Cooperative and Noncooperative R&D in

an Oligopoly with Spillovers∗

The purpose of this chapter is to examine the effects of cooperative R&D, wherein
member firms commit themselves to a joint profit-maximizing level of R&D in a “pre-
competitive stage” but remain fierce competitors in the product market. As a standard
of reference, this chapter will also examine the characteristic features of noncooperative
R&D, socially first-best R&D, and socially second-best R&D. Since the incentives for a
firm to undertake R&D on its own depend on there being a sufficient degree of appropri-
ability of the research outcomes (hence, a limited diffusion of knowledge) it is of particular
interest and relevance to see how cooperative R&D fares vis-à-vis noncooperative R&D
in the presence of R&D spillovers.

This analysis is conducted in terms of a two-stage model of oligopolistic competi-
tion. In the first stage, firms decide on their cost-reducing R&D either cooperatively or
noncooperatively, whereas in the second stage they engage in quantity competition in
the product market. Two-stage models of this type have been studied extensively by
Timothy Besley and Suzumura [2], James Brander and Barbara Spencer [3], Spencer and
Brander [17], and Masahiro Okuno-Fujiwara and Suzumura [13] in the absence of R&D
coordination and R&D spillovers.1

Claude d’Aspremont and Alexis Jacquemin [6; 7] presented an interesting analysis of
cooperative and noncooperative R&D in terms of a two-stage model of a duopoly with
R&D spillovers. They make the interesting point that cooperative R&D agreements
between otherwise competing firms may increase the R&D expenditure level relative to
the fully noncooperative case provided that the R&D spillovers are sufficiently large,
although the cooperative R&D may still fall short of the socially first-best level. For at
least two reasons, however, the robustness of their results is questionable. The present
chapter is meant to provide a careful examination of their findings with the purpose of

∗First published in American Economic Review, Vol.82, 1992, pp.1307-1320. Thanks are due to Paul
David, Claude d’Aspremont, Terence Gorman, Akira Goto, James Mirrlees, Masahiro Okuno-Fujiwara,
Agnar Sandmo, Stephen Turnbull, and John Vickers for their comments and discussion on this and
related topics. I am also grateful to two anonymous referees of American Economic Review for their
helpful comments, which substantially improved my exposition.

1In contrast, Partha Dasgupta and Joseph Stiglitz [5], Richard Levin and Peter Reiss [12], and Michael
Spence [16] analyzed one-stage models without strategic commitment to R&D, but with or without R&D
spillovers.
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locating them in a more appropriate perspective.2 In so doing, it will develop a systematic
method for analyzing the properties of a two-stage model of oligopolistic competition.

In the first place, d’Aspremont and Jacquemin [6] presented their results as surpris-
ing on the basis that cooperation should reduce excessive duplication of R&D efforts
in the presence of large spillovers.3 Note, however, that the R&D incentive of a single
firm hinges squarely on the extent of appropriability of the R&D benefits, so that the
presence of large R&D spillovers may drastically reduce the incentives for cost reduc-
tion, with the result that the R&D commitment made voluntarily by a firm tends to be
socially too small. From this viewpoint, an enforceable agreement on cooperative R&D
efforts seems to facilitate more commitments. The result of the net effect of the R&D
cooperation hinges on the relative strength of these competing effects. It will be shown
that the latter effect dominates the former not only in the duopoly example with lin-
ear inverse demand function and linear marginal cost function assumed by d’Aspremont
and Jacquemin [6], but also in a much wider class of oligopolistic industries, thereby
supporting the robustness of their results.

In the second place, d’Aspremont and Jacquemin [6] invoked the first-best welfare
(market surplus) function as their welfare criterion, but the relevance of this conven-
tion may be disputed in that the enforcement of the first-best arrangement may require
considerable leverage on the government vis-à-vis private firms, something which may
be hard to secure in reality. What is needed is an evaluation of the social gains from
cooperative R&D within the alternative feasible arrangements. It will be shown that
my results can be extended and made more relevant by invoking a second-best welfare
(market surplus) function as an alterative welfare criterion.

1 The Model

Consider an industry with n firms (2 ≤ n < +∞) producing a homogeneous product.
Let p = f(Q) be the inverse demand function, where p and Q denote, respectively, the
price and the aggregate output of this product. Let xi and qi denote, respectively, the
amount of R&D and the output of firm i. The cost of production and that of R&D are
assumed to be c(xi;x−i)qi and xi, respectively, where x−i := [x1, . . . , xi−1, xi+1, . . . , xn],
assuming for the sake of notational simplicity that the amount of R&D is measured by
its cost. Diminishing returns on R&D can be incorporated without affecting any of the
results in this chapter.

Throughout the analysis, I will assume the following:

Assumption 1: The inverse demand function f(Q) is twice continuously differentiable
with f ′(Q) < 0 for all Q ≥ 0 satisfying f(Q) > 0.

2Several salient features of cooperative research activities are analyzed by Michael Katz [11] and
Jacquemin [10], among many others. Needless to say, there are several relevant features thereof that I
had to leave out of this chapter, but in the concluding remarks, several directions in which the present
analysis should be further developed will be pointed out.

3Also, by participating in the cooperative R&D association, firms can conserve on the fixed costs of
R&D equipment and administration.
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Assumption 2: The average variable cost function c(xi;x−i) is twice continuously differen-
tiable and satisfies c(xi;x−i) > 0, (∂/∂xi)c(xi;x−i) < 0 and (∂/∂xj)c(xi;x−i) ≤ 0 for any
x = [x1, x2, . . . , xn] ≥ 0 (i 6= j; i, j = 1, 2, . . . , n). Furthermore, for any symmetric vector
x = [x1, x2, . . . , xn] ≥ 0, (∂/∂xi)c(xi;x−i) < (∂/∂xj)c(xi;x−i) (i 6= j; i.j = 1, 2, . . . , n)
holds .

No particular account is needed for Assumption 1. According to Assumption 2, a
firm’s R&D is cost-reducing and can benefit other firms without payment. However, the
cost-reducing effect of own R&D outweighs the benefits accruing freely from other firms
when all firms are spending the same amount on R&D.

In the model, firms are engaging in two-stage competition. In the first stage, firms
make an irrevocable commitment to a level of R&D in full anticipation of the equilibrium
that will be established in the second stage, where firms compete in the product market.
The second-stage strategic variable is assumed to be the level of output.

Following d’Aspremont and Jacqemin [6], I will examine two types of equilibrium.
The first equilibrium concept is noncooperative throughout the two stages, so that the
equilibrium of the second stage is a Cournot-Nash equilibrium, and that of the entire
game is a subgame-perfect equilibrium. The second equilibrium concept is a mixed
cooperative and noncooperative equilibrium; firms are supposed to coordinate their R&D
in the first stage so as to maximize joint profits with the understanding that they engage
in noncooperative competition in the second stage.

To characterize the second-stage equilibrium, let a profile of the amounts of R&D,
x = [x1, x2, . . . , xn], be parametrically given. Then the profits of firm i in the second-stage
game corresponding to an output profile q = [q1, q2, . . . , qn] are defined by

(1) πi(q; xi,x−i) := {f(Q)− c(xi;x−i)}qi − xi (i = 1, 2, . . . , n)

where Q := Σn
j=1qj. In what follows, qN(x) = [qN

1 (x), qN
2 (x), . . . , qN

n (x)] denotes the
Cournot-Nash equilibrium of the second-stage game corresponding to the specified first-
stage R&D profile x = [x1, x2, . . . , xn]. Assuming the interior optimum and second-order
conditions, qN(x) can be characterized by (∂/∂qi)πi(q

N(x); xi,x−i) = 0 (i = 1, 2, . . . , n):

(2) f ′(QN(x))qN
i (x) + f(QN(x))− c(xi;x−i) = 0 (i = 1, 2, . . . , n)

where QN(x) := Σn
j=1q

N
j (x). Throughout this chapter, I focus on the symmetric equilib-

rium, so that qN
i (x) = qN

j (x) (i, j = 1, 2, . . . , n) holds if xi = xj (i, j = 1, 2, . . . , n).
To lend substance to the oligopolistic interactions in the model, I now introduce a

strategic assumption. Let αi(q;x) and βij(q;x) be defined for any R&D profile x =
[x1, x2, . . . , xn] by

αi(q;x) :=
∂2

∂q2
i

πi(q; xi,x−i) (i = 1, 2, . . . , n)
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and

βij(q;x) :=
∂2

∂qi∂qj

πi(q; xi,x−i) (i 6= j; i, j = 1, 2, . . . , n)

respectively. I can then state the following second-stage strategic assumption in a com-
pact form:

Assumption 3: Firms’ strategic variables in the second-stage game are strategic substi-
tutes; that is, βij(q;x) < 0 (i 6= j; i, j = 1, 2, . . . , n) holds for any specified R&D profile
x = [x1, x2, . . . , xn] ≥ 0.4,5

Note that it is quite natural to invoke Assumption 3 in the present context of
homogeneous-product Cournot oligopoly, as it corresponds to the assumption of downward-
sloping reaction curves (see Bulow et al. [4]; Dixit [8]). Note also that Assumptions 1-3
are satisfied by d’Aspremont and Jacquemin’s [6] example.

Turning to the first stage of the game, define the first-stage payoff function of firm i
by

(3) Πi(x) := πi(q
N(x); xi,x−i) (i = 1, 2, . . . , n).

Then, the Nash equilibrium of the first-stage game, denoted by xN = [xN
1 , xN

2 , . . . , xN
n ], is

characterized under the assumption of interior optimum and second-order conditions by
(∂/∂xi)Πi(x

N) = 0 (i = 1, 2, . . . , n); that is,

(4)
n∑

j=1

∂

∂qj

πi(q
N(xN); xN

i ,xN
−i) ·

∂

∂xi

qN
j (xN)+

∂

∂xi

πi(q
N(xN); xN

i ,xN
−i) = 0 (i = 1, 2, . . . , n).

Note that {xN,qN(xN)} is nothing but the subgame-perfect equilibrium of the two-stage
game, which is the central focus of subsequent analysis. By definition, qN(xN) is the
second-stage Cournot-Nash equilibrium, given xN. Throughout this chapter, I focus on
the symmetric xN : xN

i = xN
j (i, j = 1, 2, . . . , n).6

4The concept of strategic substitutes and complements was first introduced by Jeremy Bulow et al.
[4] and is invoked quite widely in the recent literature on oligopoly theory. See, among others, Avinash
Dixit [8], Besley and Suzumura [2], and Okuno-Fujiwara and Suzumura [13].

5As Jesus Seade [14; 15] has aptly observed, perverse results often hold in oligopoly theory when the
Cournot-Nash equilibrium is unstable. This being the case, it is reassuring that the myopic adjustment
process à la Cournot that each firm increases (decreases) its output marginally if marginal profitability
is positive (negative) can be shown to be locally stable under Assumptions 1 and 3.

6To analyze in detail the structure of the first-stage game, define λi(x) := (∂2/∂x2
i )Πi(x) and

µij(x) := (∂2/∂xi∂xj)Πi(x) (i 6= j; i, j = 1, 2, . . . , n). As in the case of the second-stage game,
the first-stage strategic variables are strategic substitutes (resp. strategic complements) if and only if
µij(x) < (resp. >) 0 holds (i 6= j; i, j = 1, 2, . . . , n). Depending on the extent of R&D spillovers, both
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Although Assumptions 1-3 generally will be maintained throughout this chapter, there
will be several occasions when Assumption 3 must be replaced by the following assump-
tion for the sake of obtaining unambiguous verdicts:

Assumption 3∗: The inverse demand function f(Q) is concave; that is, f ′′(Q) ≤ 0 holds
for all Q ≥ 0 such that f(Q) > 0.

Note that Assumption 3∗ is the condition that guarantees the concavity of profit function
πi(q; xi,x−i) with respect to qi, and it is clearly satisfied by the linear inverse demand
function used by d’Aspremont and Jacquemin [6] as well as by many others. In the
presence of Assumption 1, Assumption 3∗ implies Assumption 3, so that the set of As-
sumptions 1, 2, and 3∗ is collectively stronger than the set consisting of Assumptions 1,
2 and 3. Finally, note that αi(q;x) and βij(q;x) become independent of the firm indexes
i and j (i 6= j; i, j = 1, 2, . . . , n) if they are evaluated at the symmetric q and x. In such
a case, it is possible to denote them simply as α(q;x) and β(q;x).

This completes the description of the two-stage model of oligopolistic competition.
I must now set about analyzing the positive as well as the normative properties of the
game.

2 R&D Spillovers and Output Response

To begin, I analyze how the individual firm’s output and the industry aggregate output
at the second-stage Nash equilibrium react to a change in the R&D expenditure by a
firm in the first-stage game. With this purpose in mind, define ω(x) := (∂/∂xi)q

N
i (x)

and θ(x) := (∂/∂xi)q
N
j (x) (i 6= j; i, j = 1, 2, . . . , n) for any symmetric R&D profile

x = [x1, x2, . . . , xn]. Clearly, ω(x) (resp. θ(x)) denotes the effect of a marginal change in
the first-stage R&D expenditure by firm i on the second-stage equilibrium output of firm i
(resp. firm j), where i 6= j. By virtue of the symmetry of x, ω(x) and θ(x) are independent
of the firm indexes i and j (i 6= j; i, j = 1, 2, . . . , n). Clearly, the effect of a change in xi

on the equilibrium aggregate output QN(x) is given by (∂/∂xi)Q
N(x) = ω(x)+(n−1)θ(x)

(i = 1, 2, . . . , n).
In Appendix A, I show that ω(x) and θ(x) can be calculated as

cases are a priori possible. It is easy to verify that the first-stage Nash equilibrium xN is locally stable with
respect to the myopic adjustment process ẋi = τ(∂/∂xi)Πi(x) (i = 1, 2, . . . , n), where ẋi denotes the time
derivative of xi and τ > 0 is the adjustment coefficient, if the inequality λ+(k−1)µ < 0 (k = 0, 1, . . . , n)
holds, where λ := λi(xN) and µ := µij(xN). In the case of a duopoly where n = 2, this inequality boils
down to λ − µ < 0, λ < 0, and λ + µ < 0. Note that the condition λ < 0 is nothing other than the
second-order condition for the first-stage payoff maximization, whereas the other two conditions reduce
to −1 < µ/λ < 1; that is,

−1 < (∂2/∂xi∂xj)Πi(xN)/(∂2/∂2xi)Πi(xN) < 1 (i 6= j; i, j = 1, 2)

which is precisely the condition analyzed by Irene Henriques [9] in the context of the d’Aspremont and
Jacquemin [6] example.
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(5) ω(x) =
1

∆(x)

{
[α(x)− β(x)]

∂

∂xi

c(xi;x−i)

+(n− 1)β(x)

[
∂

∂xi

c(xi;x−i)− ∂

∂xj

c(xi;x−i)

]}

and

(6) θ(x) =
1

∆(x)

{
α(x)

[
∂

∂xj

c(xi;x−i)− ∂

∂xi

c(xi;x−i)

]

+ [α(x)− β(x)]
∂

∂xi

c(xi;x−i)

}

where α(x) := α(qN(x),x), β(x) := β(qN(x),x) for notational brevity and where ∆(x) :=
[α(x)− β(x)][α(x) + (n− 1)β(x)] and i 6= j. One can then obtain

(7) ψ(x) := ω(x) + (n− 1)θ(x)

=
α(x)− β(x)

∆(x)
·
[

∂

∂xi

c(xi;x−i) + (n− 1)
∂

∂xj

c(xi;x−i)

]
.

It is easy to verify that

(8) α(x) = 2f ′(QN(x)) + f ′′(QN(x))qN
i (x)

(9) β(x) = f ′(QN(x)) + f ′′(QN(x))qN
i (x)

so that α(x) − β(x) = f ′(QN(x)) < 0 by virtue of Assumption 1. It then follows from
Assumption 3 that α(x) < 0, which in turn guarantees that ∆(x) > 0. Therefore,
ω(x) > 0 follows from (5), Assumption 2 and Assumption 3. In other words, an increase
in cost-reducing R&D by a firm unambiguously increases the equilibrium output of that
firm. In contrast, because of the R&D spillovers, an increase in cost-reducing R&D by
firm i exerts two conflicting effects on the equilibrium output of firm j (i 6= j). On the one
hand, it tends to increase j’s output by bringing j’s cost down through spillovers of cost-
reducing benefits. On the other hand, it tends to decrease j’s output by strengthening
i’s competitive edge against j. I will say that the R&D spillovers are sufficiently large
if the former effect outweighs the latter so that θ(x) > 0 holds .7 Finally, it follows from
(7) that the industry aggregate output at the Cournot-Nash equilibrium always increases
when one of the firms increases its cost-reducing R&D irrespective of whether the R&D
spillovers are large or small .

7This definition is in concordance with the one adopted by d’Aspremont and Jacquemin [6]. Indeed,
in their duopoly example where 0 > (∂/∂xj)c(xi;x−i) = −ε > −1 = (∂/∂xi)c(xi;x−i)(i 6= j; i, j =
1, 2), f(Q) = a− bQ, a > 0, and b > 0, one may compute that θ(x) = (2ε− 1)/3, which is positive if and
only if ε > 1

2 (i.e., if and only if the R&D spillovers are “sufficiently large” in the sense d’Aspremont and
Jacquemin [6] used the term).
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3 Mixed Cooperative and Noncooperative Game

Let us turn now to the second two-stage game. In this game, firms coordinate their R&D
in the first stage in order to maximize their joint profits, whereas they compete in the
second-stage quantity game.

The cooperative equilibrium xC = [xC
1 , xC

2 , . . . , xC
n ] of the first-stage game can be

characterized by (∂/∂xi)Σ
n
j=1Πj(x

C) = 0 (i = 1, 2, . . . , n) under the assumption of inte-
rior optimum and second-order conditions. It is easy, although tedious, to reduce this
condition to the following:

(10) qN
i (xC)

{
(n− 1)f ′(QN(xC))ψ(xC)−

[
∂

∂xi

c(xC
i ;xC

−i) + (n− 1)
∂

∂xj

c(xC
i ;xC

−i)

]}
− 1 = 0 (i 6= j; i, j = 1, 2, . . . , n).

Then the equilibrium of the whole game is given by {xC,qN(xC)}, which is also assumed
to be symmetric.

4 First-Best Welfare Analysis

The welfare performance of xN and xC can be gauged and compared in terms of several
alternative criteria. To begin, I invoke the first-best welfare (market surplus) function
WF(x) à la d’Aspremont and Jacquemin [6]. For any R&D profile x = [x1, x2, . . . , xn]
and output profile q = [q1, q2, . . . , qn], let the market surplus function W (x,q) be defined
by

(11) W (x,q) :=

∫ Q

0

f(Z)dZ −
n∑

j=1

[c(xj;x−j)qj + xj]

where Q ≡ Σn
j=1qj, which is nothing other than the sum of the consumer’s surplus and

the producer’s surplus.
Take any symmetric R&D profile x = [x1, x2, . . . , xn], and let

qF(x) = [qF
1 (x), qF

2 (x), . . . , qF
n(x)]

be the socially first-best output profile corresponding to x, which is defined by

(12) qF(x) := arg max
q>0

W (x,q).
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As is easily verified, qF(x) is characterized by the familiar marginal cost principle:

(13) f(QF(x)) = c(xi;x−i) (i = 1, 2, . . . , n)

where QF(x) := Σn
j=1q

F
j (x). Comparing qF(x) with qN(x), one can obtain the following

lemma.

Lemma 1: For any symmetric R&D profile x = [x1, x2, . . . , xn], qF
i (x) > qN

i (x) holds
(i = 1, 2, . . . , n).

(See Appendix B for the proof.)
In terms of qF(x), the first-best welfare (market surplus) function WF(x) is defined

by

(14) WF(x) := W (x,qF(x)).

One straightforward way to apply the first-best welfare function WF(x) is to compare
xN and xC directly with the socially first-best R&D, xF, which is defined by

(15) xF := arg max
x>0

WF(x).

Unless the model is further specialized in detail so that one can actually compute xN,
xC, and xF as in the d’Aspremont and Jacquemin [6] duopoly example, however, such a
direct application of WF(x) is hard to come by.

An alternative way to proceed is to evaluate the partial derivative (∂/∂xi)W
F(x) at xN

and xC for any i = 1, 2, . . . , n. If it so happens that (∂/∂xi)W
F(xN) < (resp. >) 0, then

a marginal decrease (resp. increase) in xi at xN increases the value of WF(x) marginally,
so that the cost-reducing R&D at xN is socially excessive (insufficient) at the margin in
terms of the first-best welfare function WF(x). Similarly, one can gauge the marginal
social excessiveness/insufficiency of the cost-reducing R&D at xC by evaluating the sign
of (∂/∂xi)W

F(x) at xC.
It is easy to verify that the crucial derivative to be evaluated, (∂/∂xi)W

F(x), consists
of two terms, which may be called the commitment effect ,

(16) γF(x) := − qF
i (x)

∂

∂xi

c(xi;x−i)− 1

and the spillover effect ,
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(17) σF(x) := −∑
j 6=i q

F
j (x)

∂

∂xi

c(xj;x−j).

The spillover effect σF(x) is easy to interpret. A marginal increase in xi reduces
the marginal cost c(xj;x−j) of firm j (i 6= j) through the spillover of cost-reducing
benefits, which will increase the first-best social welfare in proportion to j’s output qF

j (x).
Summing up these effects over all j 6= i, one immediately obtains σF(x).

To motivate the commitment effect, consider the problem of social-welfare maximiza-
tion without strategic commitment and R&D spillovers. One is then working with the
following alternative optimization problem:

(18) max
(q,x) >0

{∫ Q

0

f(Z)dZ −
n∑

j=1

[c(xj;x−j)qj + xj]

}

where Q := Σn
j=1qj. The first-order conditions for this maximization problem are

(19) f

(
n∑

j=1

q∗j

)
= c(x∗i ;x

∗
−i) (i = 1, 2, . . . , n)

(20) − q∗i
∂

∂xi

c(x∗i ;x
∗
−i)− 1 = 0 (i = 1, 2, . . . , n)

where q∗ = [q∗1, q
∗
2, . . . , q

∗
n] and x∗ = [x∗1, x

∗
2, . . . , x

∗
n] represent the solution to (18). Com-

paring (16) and (20), one can maintain that γF(x) captures the portion of the effect of
R&D that can be nonzero only in the presence of strategic commitment to R&D (hence
the use of the term “commitment effect”).

It is shown in Appendix C that both (∂/∂xi)W
F(xN) > 0 and (∂/∂xi)W

F(xC) > 0
hold in the presence of sufficiently large R&D spillovers.

Theorem 1: Suppose that Assumptions 1-3 hold. Then,

(i) the noncooperative equilibrium R&D level is socially insufficient at the margin in
terms of the first-best welfare criterion if R&D spillovers are sufficiently large; and

(ii) the cooperative equilibrium R&D level is socially insufficient at the margin in terms
of the first-best welfare criterion irrespective of whether R&D spillovers are large or
small.

According to Theorem 1, both xN
i and xC

i are socially insufficient at the margin in
terms of the first-best welfare criterion. How, then, does xN

i fare vis-à-vis xC
i ? To settle

this, note that xC is the maximizer of Σn
j=1Πj(x) and compute (∂/∂xi)Σ

n
j=1Πj(x

N). If
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Assumption 3∗ is used instead of Assumption 3, one can verify that (∂/∂xi)Σ
n
j=1Πj(x

N) >
0 holds in the presence of sufficiently large R&D spillovers, leading to the following
theorem.

Theorem 2: Suppose that Assumptions 1, 2, and 3∗ hold. Then, a marginal increase in
R&D level at the noncooperative equilibrium increases firms’ joint profits marginally in
the presence of sufficiently large R&D spillovers .

(See Appendix D for the proof.)
To highlight the role played by large R&D spillovers in the model, I will briefly exam-

ine the other extreme case of no R&D spillover. By definition, then, (∂/∂xj)c(xi;x−i) = 0
(i 6= j; i, j = 1, 2, . . . , n) and θ(x) < 0, so that the sign of (∂/∂xi)W

F(xN) is ambigu-
ous in general. However, I prove in Appendix E that (∂/∂xi)W

F(xN) < 0 holds if
Assumption 3∗ and n ≥ 3 are satisfied. On the other hand, I have already shown that
(∂/∂xi)W

F(xC) > 0 holds regardless of the extent of R&D spillovers. It is shown in
Appendix E that (∂/∂xi)Σ

n
j=1Πj(x

N) < 0 holds in the case of no R&D spillover.

Theorem 3: Suppose that Assumptions 1-3 hold and there is no R&D spillover. Then,
the following three statements hold:

(i) If assumption 3∗ is satisfied in place of Assumption 3 the noncooperative equilibrium
R&D level is socially excessive at the margin in terms of the first-best welfare crite-
rion when n ≥ 3.

(ii) The cooperative equilibrium R&D level is socially insufficient at the margin in terms
of the first-best welfare criterion.

(iii) A marginal decrease in R&D level at the noncooperative equilibrium marginally in-
creases firms’ joint profits.

5 Second-Best Welfare Analysis

Despite its obvious intuitive appeal and the preceding utilization by d’Aspremont and
Jacqumin [6] and many others, the relevance of the first-best market surplus function
WF(x) as the welfare criterion must be called into question. Indeed, the assumed en-
forceability of the marginal-cost principle, which underlies the use of WF(x) as a welfare
criterion, is likely to run into problems of implementation for any government in a democ-
racy. For this reason, it makes sense to invoke the second-best welfare (market surplus)
function instead, which is defined by

(21) W S(x) := W (x,qN(x)).

Unlike WF(x), W S(x) presupposes that the oligopolistic competition in the second-stage
quantity game lies beyond the regulatory power of the nonomnipotent government. In
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other words, W S(x) is one way to evaluate the second-best performance of the oligopolis-
tic industry.

If WF(x) is replaced by W S(x), the crucial derivative (∂/∂xi)W
S(x) should be de-

composed into three, rather than two, terms. In addition to the commitment effect,

(22) γS(x) := − qN
i (x)

∂

∂xi

c(xi;x−i)− 1

and the spillover effect,

(23) σS(x) := −
∑

j 6=i

qN
j (x)

∂

∂xi

c(xj;x−j)

there is an additional term, which may be called the distortion effect :

(24) δS(x) :=
n∑

j=1

[f(QN(x))− c(xj;x−j)]
∂

∂xi

qN
j (x).

Clearly, the distortion effect is nothing other than the sum of marginal distortions gen-
erated by a marginal change in xi.

If γS(x), σS(x), and δS(x) are evaluated at xN, one obtains

(25) γS(xN) = − (n− 1)f ′(QN(xN)) · qN
i (xN)θ(xN)

(26) σS(xN) = − (n− 1)qN
i (xN) · ∂

∂xj

c(xN
i ;xN

−i) (i 6= j)

(27) δS(xN) = [f(QN(xN))− c(xN
i ;xN

−i)] · ψ(xN),

all of which are positive under Assumptions 1-3 in the presence of sufficiently large R&D
spillovers. Therefore, (∂/∂xi)W

S(xN) = γS(xN) + σS(xN) + δS(xN) > 0.

On the other hand, evaluating γS(x), σS(x), and δS(x) at xC, one obtains

(28) γS(xC) = − (n− 1)qN
i (xC) · f ′(QN(xC))ψ(xC) + (n− 1)qN

i (xC) · ∂

∂xj

c(xC
i ;xC

−i)

48



(29) σS(xC) = − (n− 1)qN
i (xC) · ∂

∂xj

c(xC
i ;xC

−i) (i 6= j)

(30) δS(xC) = [f(QN(xC))− c(xC
i ;xC

−i)] · ψ(xC).

Since γS(xC) cancels the second term of σS(xC), one obtains

(31)
∂

∂xi

W S(xC) = {− (n− 1)qN
i (xC)f ′(QN(xC)) + [f(QN(xC))− c(xC

i ;xC
−i)]} · ψ(xC)

which is unambiguously positive under Assumptions 1-3, irrespective of whether R&D
spillovers are large or small.

I have thus established the following theorem, which shows in effect that, when the
R&D spillovers are sufficiently large, the social insufficiency of the amount of cooperative
as well as noncooperative equilibrium R&D at the margin remains intact even if the
first-best welfare criterion is replaced by the more realistic second-best welfare criterion.

Theorem 4: Suppose that Assumptions 1-3 hold. Then,

(i) the noncooperative equilibrium R&D level is socially insufficient at the margin in
terms of the second-best welfare criterion if the R&D spillovers are sufficiently large;
and

(ii) the cooperative equilibrium R&D level is socially insufficient at the margin in terms
of the second-best welfare criterion irrespective of whether R&D spillovers are large
or small.

By contrast, to crystallize the role played by the assumption of sufficiently large
spillovers, examine the opposite polar case of no spillover. In the case of noncooperative
equilibrium, γS(xN) < 0, σS(xN) = 0, and δS(xN) > 0 from (25), (26), and (27) in the
absence of R&D spillover, so that (∂/∂xi)W

S(xN) consists of two terms with opposite
signs. Furthermore,

(32)
∂

∂xi

W S(xN) = δS(xN) ·





1− (n− 1)



− ∂

∂xi

qN
j (xN)

∂

∂xi

QN(xN)








holds, where use is made of (2) for x = xN. As Okuno-Fujiwara and Suzumura [13] have
observed, the expression within the square brackets in (32) is independent of the number
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of firms n, so that (32) implies that the crucial term (∂/∂xi)W
S(xN) becomes negative

as n increases.8

On the other hand, in the case of cooperative equilibrium, γS(xC) > 0, σS(xC) = 0,
and δS(xC) > 0 from (28), (29), and (30) in the absence of R&D spillover, so that
(∂/∂xi)W

S(xC) is unambiguously positive.
In summary, one can assert the following:

Theorem 5: Suppose that Assumptions 1-3 hold and there exists no R&D spillover. Then,

(i) if there is a sufficiently large number of firms in the industry, then the noncooperative
equilibrium R&D level is socially excessive at the margin in terms of the second-best
welfare criterion; and

(ii) the cooperative equilibrium R&D level is socially insufficient at the margin in terms
of the second-best welfare criterion.

6 Concluding Remarks

The main conclusions of my analysis are succinctly summarized in Table 1 (large spillover
case) and Table 2 (no spillover case), where a “+,” “0,” or “−” in any cell signifies
that the partial derivative in the corresponding row is, respectively, “positive,” “zero,”
or “negative” when it is evaluated at the R&D profile in the corresponding column.
When the validity of a particular sign requires more than just the standard Assumptions
1-3, that fact is indicated in the table footnote. These marginal conclusions on the
performance of xN and xC can be converted into global conclusions; that is, the ranking
among xN

i , xC
i , xF

i , and xS
i , on the one hand, and the ranking among QN(xN), QN(xC),

QN(xS), and QF(xF), on the other, can be obtained if the relevant welfare or joint profit
function is guaranteed to be single-peaked.9

Comparison between Table 1 and Table 2 yields several policy-relevant conclusions.
(a) From comparison of the first and second rows in each table, it appears that the
qualitative conclusions remain the same even if one uses the second-best welfare function
instead of the first-best function. Note, however, that the policy relevance of these
conclusions is substantially increased by the use of the second-best welfare criterion. (b)
Comparing the first and second columns in Table 1, one sees that, in the presence of large

8How large should the number of firms be for the validity of this assertion? It was shown by Okuno-
Fujiwara and Suzumura [13] that the critical number of firms remains small for a wide class of models.
Indeed, if the inverse demand function is concave (i.e., under Assumption 3∗), it can be shown that the
watershed number of firms is exactly two, so that my conclusion applies to all oligopoly models with
concave inverse demand functions. If the inverse demand function is constantly elastic, the value of the
watershed number of firms changes as the value of elasticity changes. However, for a wide range of the
values of elasticity, the value of the watershed number of firms remains consistently less than 3.

9By the single-peaked nature of a function f(x), where x = [x1, x2, . . . , xn], I mean here that
f(xi;x−i) has a unique local (hence global) maximum with respect to xi for any specified value of
x−i = [x1, . . . , xi−1, xi+1, . . . , xn] (i = 1, 2, . . . , n). Note that, in the duopoly example of d’Aspremont
and Jacquemin [6], the first-best welfare function as well as the joint profit function is assured to be
concave (hence single-peaked).
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spillovers, not only the noncooperative equilibrium R&D level but also the cooperative
equilibrium R&D level is socially insufficient at the margin, so that the technology policy
which facilitates further investment in R&D is marginally welfare-improving irrespective
of whether firms cooperate or not. (c) Comparing the first and second columns in Table
2, one sees that, in the absence of spillovers, while the cooperative equilibrium R&D level
remains socially too small at the margin, the noncooperative equilibrium R&D level turns
out to be socially excessive at the margin. Therefore, the marginally welfare-improving
technology policy should facilitate (resp. restrict) investment in R&D if firms cooperate
(resp. do not cooperate). (d) From a comparison of the third row in Table 1 with the
corresponding row in Table 2, it appears that an increase in R&D at the noncooperative
equilibrium marginally increases (resp. decreases) joint profits if spillover effects are large
(resp. small).

Table 1—Large Spillover Case

R&D profile

xN xCDerivative

+
+

+a

+

+
0

(∂/∂xi)W
F(x)

(∂/∂xi)W
S(x)

(∂/∂xi)Σ
n
j=1Πj(x)

Notes: The vectors xN and xC denote, respectively, the noncooperative equilibrium R&D
profile and the cooperative equilibrium R&D profile. The symbol “+,” “0,” or “−” denotes,
respectively, that the partial derivative in the corresponding row is “positive,” “zero” or
“negative” at the R&D profile in the corresponding column.

aThis requires Assumption 3∗.

Table 2—No-Spillover Case

R&D profile

xN xCDerivative

−a

−b

−

+
+

0

(∂/∂xi)W
F(x)

(∂/∂xi)W
S(x)

(∂/∂xi)Σ
n
j=1Πj(x)

Notes: The vectors xN and xC denote, respectively, the noncooperative equilibrium R&D
profile and the cooperative equilibrium R&D profile. The symbol “+,” “0,” or “−” denotes,
respectively, that the partial derivative in the corresponding row is “positive,” “zero,” or
“negative” at the R&D profile in the corresponding column.

aThis requires Assumption 3∗ and n ≥ 3.
bThis requires that the number of firms is sufficiently large.

51



Several concluding remarks are in order concerning directions for future analysis of
cooperative R&D. First, as Jeffrey Bernstein and Ishaq Nadiri [1] and Richard Levin and
Peter Reiss [12] have emphasized, R&D undertaken by firms outside the industry (e.g., by
material suppliers and equipment suppliers) may exert an influence on a firm’s marginal
cost. Such interindustry spillover effects should be taken into consideration along with
the intraindustry spillover effects in order to obtain a well-balanced evaluation of the
effects of R&D spillovers.

Second, one of the alleged functions of cooperative R&D is precisely to generate syn-
ergic effects by pooling various complementary resources, such as research information
and experience, teams of researchers, and technological know-how. From this viewpoint,
my formulation of R&D spillovers in terms of the average variable cost function, which
remains the same irrespective of whether firms cooperate or not, may be seriously inad-
equate. For fuller analysis, one presumably should endogenize the spillover function by
making the cost-reducing technology dependent on the extent to which firms pool their
complementary R&D resources.

Third, the potential benefits of cooperative R&D are often related to an acceleration
in the speed of invention and innovation by risk-spreading and risk-pooling. In discussing
cost-reducing R&D, therefore, one should introduce an element of uncertainty into the
analysis.

Fourth, my concentration on the second-stage quantity game and the assumption of
symmetric equilibria are likely to restrict the generality of the conclusions. In particular,
it may well be worthwhile to select a subgroup of cooperating firms and let this subgroup
conduct R&D exclusively—subject to the cost-sharing agreements among all member
firms—since the group as a whole can thereby conserve on the fixed cost of equipment
installation and avoid any unnecessary duplication of R&D efforts.

The policy implications of my results should be interpreted carefully in the light of
these qualifying observations. Nevertheless, I hope that the results, partial though they
are, and the method of analysis that has been developed en route, will contribute to a
better understanding of the complex issue of cooperative R&D.

Appendix A: Derivation of the Formulas for ω(x) and

θ(x)

To derive formulas (5) and (6), differentiate the first-order condition (∂/∂qi)Πi(q
N(x); xi,

x−i) = 0 characterizing qN(x) with respect to xi and xh (h 6= i) and use symmetry to
obtain the following simultaneous equations for ω(x) and θ(x):

(A1) α(x)ω(x) + (n− 1)β(x)θ(x) =
∂

∂xi

c(xi,x−i)

(A2) β(x)ω(x) + [α(x) + (n− 2)β(x)]θ(x) =
∂

∂xj

c(xi,x−i)
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where i 6= j. Solving (A1) and (A2) for ω(x) and rearranging terms appropriately, one
obtains (5) in the main text; solving for θ(x) and rearranging, one obtains (6).

Appendix B: Proof of Lemma 1

Note that (2) and (13) yield f(nqF
i (x))−f(nqN

i (x)) = f ′(nqN
i (x))qN

i (x) for any symmetric
R&D profile x = [x1, x2, . . . , xn], so that there exists a positive number ζ(x), 0 < ζ(x) <
1, such that

(B1) qF
i (x)− qN

i (x) =
qN
i (x)f ′(nqN

i (x))

nf ′(n{ζ(x)qF
i (x) + [1− ζ(x)]qN

i (x)})

holds by virtue of the mean-value theorem. Lemma 1 is an immediate consequence of
(B1) and Assumption 1.

Appendix C: Proof of Theorem 1

Taking the first-order condition (2) characterizing qN
i (x) and the symmetry of xN into

consideration, one can rewrite the first-order condition (4) characterizing xN as follows:

(C1) − qN
i (xN)

∂

∂xi

c(xN
i ;xN

−i)−1 = − (n−1)f ′(QN(xN))qN
i (xN)θ(xN) (i = 1, 2, . . . , n).

Comparing (16) at x = xN with (C1), one may obtain

(C2) γF(xN) = − (n− 1)f ′(QN(xN))qN
i (xN)θ(xN) + [qN

i (xN)− qF
i (xN)]

∂

∂xi

c(xN
i ;xN

−i)

which is positive in the presence of sufficiently large R&D spillovers, where use is made of
Lemma 1 and Assumptions 1 and 2. On the other hand, at x = xN, (17) can be reduced
to

(C3) σF(xN) = − (n− 1)qF
i (xN) · ∂

∂xj

c(xN
i ;xN

−i) (i 6= j)

which is nonnegative by virtue of Assumption 2. It then follows that (∂/∂xi)W
F(xN) =

γF(xN) + σF(xN) > 0.
Turning to the cooperative R&D equilibrium xC, one may invoke (10) to obtain
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(C4) γF(xC) = − (n− 1)f ′(QN(xC)) · qN
i (xC)ψ(xC) + [qN

i (xC)− qF
i (xC)] · ∂

∂xi

c(xC
i ;xC

−i)

+ (n− 1)qN
i (xC) · ∂

∂xj

c(xC
i ;xC

−i) (i 6= j).

Coupling (C4) with σF(xC), which can be reduced to

(C5) σF(xC) = − (n− 1)qF
i (xC) · ∂

∂xj

c(xC
i ;xC

−i) (i 6= j)

one obtains

(C6)
∂

∂xi

WF(xC) = − (n− 1)f ′(QN(xC))qN
i (xC)ψ(xC)

+[qN
i (xC)− qF

i (xC)] ·
[

∂

∂xi

c(xC
i ;xC

−i) + (n− 1)
∂

∂xj

c(xC
i ;xC

−i)

]

where i 6= j, which is positive by virtue of ψ(xC) > 0, Lemma 1, Assumption 1 and
Assumption 2, irrespective of whether R&D spillovers are large or small.

Appendix D: Proof of Theorem 2

Invoking (C1), one can compute that

(D1)
∂

∂xi

n∑
j=1

Πj(x
N) = (n− 1)qN

i (xN) ·
[
f ′(QN(xN))ψ(xN)− ∂

∂xj

c(xN
i ;xN

−i)

]

holds, where i 6= j. Having recourse to (5) and (6), one is assured that

(D2) sgn
∂

∂xi

n∑
j=1

Πj(x
N)

= sgn

{
[− (n− 3)α(xN) + 2(n− 1)β(xN)] · ∂

∂xj

c(xN
i ;xN

−i)− α(xN)
∂

∂xi

c(xN
i ;xN

−i)

}

so that (∂/∂xi)Σ
n
j=1Πj(x

N) > (resp. <) 0 holds if and only if
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(D3) Ωi(x
N) := α(xN) + [(n− 3)α(xN)− 2(n− 1)β(xN)] ·

∂

∂xj

c(xN
i ;xN

−i)

∂

∂xi

c(xN
i ;xN

−i)

> (resp. <) 0

holds, where i 6= j. Under the assumption of sufficiently large R&D spillovers,

(D4)

∂

∂xj

c(xN
i ;xN

−i)

∂

∂xi

c(xN
i ;xN

−i)

>
β(xN)

α(xN)

obtains, where i 6= j. Note that an inequality (n − 3)α(x) − 2(n − 1)β(x) > 0 is
valid for any symmetric R&D profile x = [x1, x2, . . . , xn]. To verify this fact, define
κN(x) := QN(x)f ′′(QN(x))/f ′(QN(x)), which makes it possible to rewrite (8) and (9) as

(D5) α(x) = f ′(QN(x))

[
2 +

κN(x)

n

]

(D6) β(x) = f ′(QN(x))

[
1 +

κN(x)

n

]
.

It follows that

(D7) (n− 3)α(x)− 2(n− 1)β(x) =
α(x)

2n + κN(x)
· {− [κN(x) + 4]n− κN(x)} > 0

whose sign is due to α(x) < 0 and κN(x) ≥ 0, which follows from Assumption 3∗.
Putting (D4), (D5), and (D7) together and having recourse to Assumption 3∗, one

obtains

(D8) Ωi(x
N) > α(xN) +

β(xN)

α(xN)
· [(n− 3)α(xN)− 2(n− 1)β(xN)].

Using (D5) and (D6), one can verify that
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(D9) α(xN) + (n− 3)β(xN)− 2(n− 1)
[β(xN)]2

α(xN)

= −f ′(QN(xN))κN(xN)

2n + κN(xN)
· {κN(xN) + n + 1} ≥ 0.

One is thus led to conclude that (∂/∂xi)Σ
n
j=1Πj(x

N) > 0.

Appendix E: Proof of Theorem 3

In the case of no R&D spillover, (∂/∂xi)W
F(xN) = γF(xN), whose sign is indeterminate

in general. However, if Assumption 3∗ is also adopted, one may obtain

(E1)
∂

∂xi

WF(xN) =
∂

∂xi

c(xN
i ;xN

−i)·
[

n + κN(xN)

n + 1 + κN(xN)

(
n− 1

n

)
qN
i (xN) + qN

i (xN)− qF
i (xN)

]

≤ ∂

∂xi

c(xN
i ;xN

−i)q
N
i (xN) ·

[
n + κN(xN)

n + 1 + κN(xN)

(
n− 1

n

)
− 1

n

]

where use is made of (B1), (C2), and (D5). Since the expression within the brackets is
positive when n ≥ 3, it follows from (E1) that (∂/∂xi)W

F(xN) < 0 when n ≥ 3. This
proves part (i) of Theorem 3. Part (ii) of Theorem 3 needs no further proof, whereas
part (iii) follows from (D2) by setting (∂/∂xj)c(x

N
i ;xN

−i) = 0 (i 6= j).
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Chapter 20
Symmetric Cournot Oligopoly and

Economic Welfare: A Synthesis∗

1 Introduction

Contrary to “a widespread belief that increasing competition will increase welfare (Stiglitz
[18, p.184]),” recent studies have revealed that competition may sometimes be socially
“excessive”. In particular, Mankiw and Winston [11] and Suzumura and Kiyono [21] have
shown that socially excessive firm entry may occur in unregulated oligopolitic markets.1

This happens because entry is occasionally more desirable to entrants than to the society,
as new entry creates an incentive for incumbent firms to reduce their outputs. This result
was established in a partial equilibrium framework for symmetric Cournot oligopoly.2

The purpose of the present chapter is to add a new dimension to this literature by
looking into strategic aspects of cost-reducing R&D investment that may create incen-
tives towards socially excessive investment. We consider an oligopolistic competition
played in three stages. In the first stage, firms simultaneously decide whether or not
to enter the market. In the second stage, firms make an irrevocable commitment to
R&D investment, which affects production cost in the third stage where firms compete
in quantities. Since R&D investment is a fixed commitment, firms’ investment decisions
are affected by strategic considerations.

∗First published in Economic Theory, Vol.3, 1993, pp.43-59 as a joint paper with M. Okuno-Fujiwara.
This is the synthesized version of the two earlier papers, Okuno-Fujiwara and Suzumura [12] and Suzu-
mura [19]. We are grateful to Professors J. Brander, D. Cass, M. Majumdar, A. Postlewaite, J. Rich-
mond, A. Sandmo, B. Spencer and J. Vickers for their helpful comments and discussions on earlier
drafts. Needless to say, they should not be held responsible for any remaining defects of this chapter.
Financial supports from the Japan Center for Economic Research, Tokyo Center for Economic Research,
a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan, and the Institute for Monetary and Economic Research, the Bank of Japan are
gratefully acknowledged.

1See, also, Perry [13] and von Weizsäcker [22; 23].
2Konishi, Okuno-Fujiwara and Suzumura [12] have generalized this result with general equilibrium

interactions, whereas Lahiri and Ono [10] have shown that this paradoxical result essentially survives
with heterogeneous firms by proving that eliminating minor firms increases social welfare through the
improvement of average production efficiency which overwhelms the undesirable effect of a change in
market structure.
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In the first half of the chapter, we analyze the second and the third stage game, with a
number of firms fixed. Brander and Spencer [2] analyzed this game in a Cournot duopoly
setting and showed that the level of investment is higher at the strategic equilibrium than
that at the non-strategic equilibrium. They also showed that investment is sometimes
socially excessive as it exceeds the level that maximizes second-best social welfare.3 In
this chapter, we identify the causes of this excessive investment and generalize their
results in several respects. First, we shall focus on the excessive investment at the margin
and decompose the welfare effect of an additional investment into the commitment effect
and the distortion effect . Second, by invoking the concept of strategic substitutes due
to Bulow et al. [4], we shall provide a clear interpretation of the excessive investment
result.4 Third, we shall establish an increase in the number of firms is likely to cause a
socially excessive investment.

In the latter half of this chapter, we shall consider the fully-fledged three stage game.
Under a set of rather weak assumptions, we shall show that the excessive entry à la
Mankiw-Whinston and Suzumura-Kiyono is extended even with the existence of strategic
investment.

The structure of this chapter is as follows. In Section 2, our model is formulated.
Section 3 considers the second and the third stage games with a fixed number of firms,
and decomposes the welfare effect of a change in R&D investment into the commitment
effect and the distortion effect. In this section, we shall show that, under fairly mild
conditions, the strategic R&D investment is socially excessive at the margin if the actual
number of firms exceeds a certain critical number. Section 4 extends our analysis to the
full three stage model and a marginal reduction of the number of firms from the free
entry level is shown to improve social welfare under a slightly more restrictive set of
assumptions. Proofs are gathered in Section 5. Section 6 concludes the chapter.

2 Distortion Effect and Commitment Effect: The

Homogeneous Product Case

2.1 Consider an industry where operating firms produce a homogeneous product. Firms
engage in three-stage competition. There are infinite number of potential entrants. In the
first stage, firms decide whether or not to enter the market in a predetermined sequential
order. In the second stage each firm makes a strategic commitment to cost-reducing
R&D, whereas firms compete in terms of quantities in the third stage.

In this chapter, we will utilize three different equilibrium concepts. Given any arbi-
trary number of firms and R&D investment profile, the third stage Cournot-Nash equi-

3Note, however, they assumed the Cournot competition with product differentiation, while in this
chapter we assume the Cournot competition with homogeneous products. See also d’Aspremont and
Jacquemin [5] and Suzumura [20] which analyzed the role of R&D spillovers and cooperative research
associations in the framework of two-stage oligopoly models.

4Brander and Spencer [2, p.277] assumed, in effect, that products are strategic substitutes. See, also,
Besley and Suzumura [1], Eaton and Grossman [7] and Fundenberg and Tiroie [8] for other contexts
where this assumption plays an essential role.
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librium is defined. Given an arbitrary number of firms, the second stage subgame perfect
equilibrium is defined when the relevant game is defined by the second and the third
stages of the entire game. Finally, the first stage free entry equilibrium is defined as a
subgame perfect equilibrium of the entire game. The focus of our analysis is the welfare
performances of the second stage symmetric subgame perfect equilibrium and that of the
first stage free entry equilibrium.

2.2 The inverse demand function for the product is p = f(Q), where p is the price and Q
is the industry output. The cost-reducing R&D and the output level of firm i is denoted
by xi and qi, respectively, and the variable cost function of firm i is represented by c(xi)qi,
where the function c(·) is assumed to be identical for all firms.

For each specified number of firms n ≥ 2 and each specified profile of R&D com-
mitments x = (x1, x2, . . . , xn) > 0, the third stage payoff function of firm i is given
by

(2.1) πi(q;x; n) := {f(Q)− c(xi)}qi − xi,

where q = (q1, q2, . . . , qn) and Q =
n∑

j=1

qj. For notational simplicity, we assume that the

R&D level xi is measured by the expenditure for equipment installations. Let qN(x; n)
denote the third stage Cournot-Nash equilibrium corresponding to the specified (x; n).

We assume throughout that qN(x; n) is unique, symmetric and positive if the R&D
profile x is symmetric and positive.5 We also assume:

A(1): f(Q) is twice continuously differentiable and satisfies f ′(Q) < 0 for all Q ≥ 0 such
that f(Q) > 0. Furthermore, there exists a constant δ0 > −∞ such that

(2.2) δ(Q) :=
Qf ′′(Q)

f ′(Q)
≥ δ0 for all Q ≥ 0 with f(Q) > 0.6

A(2): c(x) is twice continuously differentiable and satisfies c(x) > 0, c′(x) < 0 and
c′′(x) > 0 for all x ≥ 0.

For any output profile q = (q1, q2, . . . , qn), R&D profile x = (x1, x2, . . . , xn) and the
number of firms n, we define

αi(q;x; n) :=
∂2

∂q2
i

πi(q;x; n)

βij(q;x; n) :=
∂2

∂qi∂qj

πi(q;x; n) (i 6= j; i, j = 1, 2, . . . , n).

5An n-vector y = (y1, y2, . . . , yn) is symmetric if yi = yj for all i, j = 1, 2, . . . , n, whereas y is positive
if yi > 0 for all i = 1, 2, . . . , n.

6The elasticity δ of the slope of inverse demand function plays a crucial role in many contexts of
oligopolistic interaction. See Besley and Suzumura [1], Seade [15; 16], Suzumura [19], and Suzumura
and Kiyono [21], among others.
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Note that βij(q;x; n) is the crucial term that determines whether the second stage
strategies are strategic substitutes (βij(q;x; n) < 0) or strategic complements (βij(q;x; n) >
0).7 It will be assumed that:

A(3): The second stage strategies are strategic substitutes so that βij(q;x; n) < 0 holds
for any (q;x; n) (i 6= j; i, j = 1, 2, . . . , n).

Remark 1. A(1) admits the following class of inverse demand functions with constant
elasticity δ of f ′(Q):

(2.3) f(Q) =

{
a− bQγ if γ = δ + 1 6= 0
a− b · log Q if δ = −1,

where a is a non-negative constant and b is a positive (resp. negative) constant if γ < 0
(resp. γ > 0). Note that (2.3) includes a linear demand (γ = 1) as well as constantly
elastic demand (a = 0), so that it still accommodates a wide class of “normal” inverse
demand functions.

Remark 2. The assumption of strategic substitutability is quite natural to require in
our present context, since it is equivalent to assuming the downward sloping reaction
functions in the third stage quantity game.

Remark 3. It is easy to verify that

(2.4) αi(q
N(x; n);x; n) = 2f ′(QN(x; n)) + qN

i (x; n) · f ′′(QN(x; n))

(2.5) βij(q
N(x; n);x; n) = f ′(QN(x; n)) + qN

i (x; n) · f ′′(QN(x; n))

hold, where QN(x; n) =
n∑

j=1

qN
j (x; n). If x is symmetric, αi and βij are identical for all i

and j. In this case, invoking (2.2), we can rewrite (2.4) and (2.5) into

(2.6) α(x; n) = n−1 · f ′(QN(x; n)) · {2n + δ(QN(x; n))}

(2.7) β(x; n) = n−1 · f ′(QN(x; n)) · {n + δ(QN(x; n))}

respectively, where α(x; n) := αi(q
N(x; n);x; n) and β(x; n) := βij(q

N(x; n);x; n) for
notational simplicity. Therefore, A(3) implies that:

(2.8) n + δ(QN(x; n)) > 0

7For the concept of strategic substitutes and complements, see Bulow, Geanakoplos and Klemperer
[4]. See, also, Eaton and Grossman [7] and Fudenberg and Tirole [8].
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for any x and n ≥ 2, where use is made of A(1). Note that (2.8) is satisfied for any n ≥ 2
if and only if

(2.8∗) 2 + δ(QN(x; n)) > 0

holds. Note also that A(1) and (2.8) guarantee that α(x; n) < 0 holds for any (x; n).

2.3 Under the assumption of an interior optimum, the third stage Cournot-Nash equi-
librium qN(x; n) is characterized by

(2.9) f(QN(x; n)) + qN
i (x; n) · f ′(QN(x; n)) = c(xi) (i = 1, 2, . . . , n).

The first aim of our analysis is to ascertain how the Cournot-Nash output qi(x; n) be-
haves in response to a change in xi, xj (i 6= j) and n. Defining ω(x; n) := (∂/∂xi)q

N
i (x; n)

and θ(x; n) := (∂/∂xj)q
N
i (x; n) (i 6= j), straightforward computations assert the follow-

ing:

Lemma 1. For each symmetric x and n,

(2.10) (∂/∂n)qN
i (x; n) = − qN

i (x; n) · β(x; n)

α(x; n) + (n− 1)β(x; n)
< 0

(2.11) ω(x; n) =
c′(xi)

∆(x; n)
· {α(x; n) + (n− 2)β(x; n)} > 0

(2.12) θ(x; n) = − c′(xi)

∆(x; n)
· β(x; n) < 0

hold, where

(2.13) ∆(x; n) := {α(x; n)− β(x; n)} · {α(x; n) + (n− 1)β(x; n)} > 0.8

2.4 We now turn to the second stage game. For each specified n, the first stage pay-off
function of firm i is given by

(2.14) Π i(x; n) = πi(qN(x; n);x; n).

If we denote the Nash equilibrium of the second stage game by xN(n), it is clear that
{xN(n),qN(xN(n); n)} is nothing other than the second stage subgame perfect equilibrium

8Since β(x; n) < 0 and α(x; n) < 0 hold under A(1) and A(3), it follows that
(1∗) α(x;n) + (k − 1)β(x; n) < 0 (k = 0, 1, . . . , n)
holds. Note that (1∗) is a sufficient condition for the local stability of the myopic adjustment process

(2∗) q̇i = σ · ∂

∂qi
πi(q;x;n) (i = 1, 2, . . . , n)

where q̇i denotes the time derivative of qi, and σ > 0 stands for the adjustment coefficient.
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among n firms. We assume throughout that xN(n) is unique, symmetric and positive for
each n.

Assuming an interior optimum, xN(n) is characterised by

(2.15) {f(QN(xN(n); n))− c(xN
i (n))} · (∂/∂xi)q

N
i (xN(n); n) + qN

i (xN(n); n)

· {f(QN(xN(n); n))·(∂/∂xi)Q
N(xN(n); n)− c′(xN

i (n))} − 1 = 0 (i = 1, 2, . . . , n).

Invoking (2.9) for x = xN(n), (2.15) reduces into

(2.16) − c′(xN
i (n)) · qN

i (xN(n); n)− 1

= {f(QN(xN(n); n))− c(xN
i (n))} ·

∑

j 6=i

(∂/∂xi)q
N
j (xN(n); n) (i = 1, 2, . . . , n),

which proves to be crucially important in what follows.

2.5 Consider now the profits Π i(xN(n); n) earned by firm i at the second stage subgame
perfect equilibrium among n firms. According to the classical entry/exit dynamics, the
number of firms n will increase (resp. decrease) whenever Π i(xN(n); n) > 0 (resp. < 0),
viz.,

(2.17) ṅ > 0 (resp. < 0) ⇔ Π i(xN(n); n) > 0 (resp. < 0),

where ṅ denotes the time derivative of n.
Let the equilibrium number of firms ne be defined as the stationary point of the

dynamic process specified by (2.17):

(2.18) Π i(xN(ne); ne) = 0 (i = 1, 2, . . . , ne).

Then {ne,x
N(ne),q

N(xN(ne); ne)} constitutes the first stage free entry equilibrium.

2.6 To gauge the welfare performance of the industry, we define the net market surplus
function by

(2.19) W (q;x; n) :=

∫ Q

0

f(R)dR−
n∑

j=1

{c(xj)qj + xj},

where Q =
n∑

j=1

qj.

If the government can control this industry in its entirety from the viewpoint of social
welfare maximization, the best that can be done is to impose the socially first best R&D,
xF (n), and the socially first best output, qF (n), on each incumbent firm and to choose
the first best number of firms , nf . These are defined by

(2.20) f(nqF (n))− c(xF (n)) = 0
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(2.21) − c′(xF (n)) · qF (n)− 1 = 0

(2.22) nf := arg max
n≥ 1

W (qF (n),xF (n); n).

Realistically speaking, however, such a first best policy is hard to implement, since
firms are thereby imposed to produce in deficit. If the government cannot control firms’
competitive strategies, however, the best that can still be done may be to choose the
second best number of firms :

(2.23) ns := arg max
n≥ 1

W (qN(xN(n); n);xN(n); n).

That is, let ns firms freely compete to establish the second-stage subgame perfect equi-
librium {xN(ns);q

N(xN(ns); ns)}.
In the short-run, however, the government may not be able to control the number of

firms. It may be forced to control the R&D level of each incumbent firms to the second
best level, xS(n), defined by

(2.24) xS(n) := arg max
x > 0

W (qN(x; n);x; n).

Despite its obvious relevance and appeal, such second best policies may still be difficult
to implement. Because of uncertainty on the precise nature of the functions involved, it
may be prohibitively hard to identify where exactly xS(n) is located. What is required
is a policy prescription which does not presuppose the availability of detailed knowledge
on the nature of demand and cost functions involved. This is precisely what we look for
in the next sections.

3 Commitment Effect, Distortion Effect and the Num-

ber of Firms

3.1 In this section, we assume the number of firms, n, is uncontrollable but R&D invest-
ment is under the government’s control. Let WN(x; n) be the net market surplus with
outputs evaluated at the third stage Cournot-Nash equilibrium:

(3.1) WN(x; n) :=

∫ QN (x;n)

0

f(Q)dQ−
n∑

j=1

{c(xj)q
N
j (x; n) + xj}.

Suppose (∂/∂xi)W
N(x(n); n) < (resp. >) 0. Then a marginal decrease (resp. a

marginal increase) of firms i’s investment at the second stage subgame perfect equilib-
rium increases social welfare, so that the investment at the subgame perfect equilibrium
is socially excessive (resp. socially insufficient) at the margin.
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To understand what determines the crucial term (∂/∂xi)W
N(xN(n); n), it is use-

ful to decompose it into the commitment effect Ci(x
N(n); n) and the distortion effect

Di(x
N(n); n). To be concrete, the commitment effect is defined by9

(3.2) Ci(x
N(n); n) := − c′(xN

i (n)) · qN
i (xN(n); n)− 1,

which, in view of (2.16), can be reduced into

(3.3) Ci(x
N(n); n) := µi(x

N(n); n) ·
∑

j 6=i

(∂/∂xi)q
N
j (xN(n); n),

whereas the distortion effect is defined by

(3.4) Di(x
N(n); n) :=

n∑
j=1

µj(x
N(n); n) · (∂/∂xi)q

N
j (xN(n); n),

where µj(x
N(n); n) := f(QN(xN(n); n)) − c(xN

j (n)) denotes the marginal distortion of
firm j, which is independent of firm index j at the symmetric equilibrium. By simply
adding Ci(x

N(n); n) and Di(x
N(n); n), we obtain the crucial term (∂/∂xi)W

N(xN(n); n).
In view of symmetry of x and (2.11)-(2.13),

(3.5) Ci(x
N(n); n) = (n− 1) · µ(xN(n); n) · θ(xN(n); n) < 0,

(3.6) Di(x
N(n); n) = µ(xN(n); n) · {ω(xN(n); n) + (n− 1) · θ(xN(n); n)} > 0,

where µ(xN(n); n) := µj(x
N(n); n) > 0. Therefore (∂/∂xi)W

N(xN(n); n) consists of two
components with opposite signs.

3.2 It may be useful to illustrate our decomposition of the marginal welfare effect with
the help of Figure 1. At the original symmetric subgame perfect equilibrium, each firm
produces q∗i := qN

i (xN(n); n) with the marginal cost c∗ := c(xN
i (n); n), and the industry

output is Q∗ := nq∗i . If firm i unilaterally increases its investment by a small amount
ε > 0, its marginal cost is reduced to c∗∗ := c∗ − ε · {− c′(xN

i (n))}. Products being
strategic substitutes, this increase in firm i’s aggressiveness reduces other firms’ output,
so that firm i’s residual demand curve shifts up. As a result, industry output increases
to Q∗∗, and output of firm i increases to q∗∗i .

9In the absence of strategic commitment, the problem of social welfare maximization takes the form

of maximizing
∫ Q

0

f(R)dR−
n∑

j=1

{c(xj)qj + xj} with respect to {(qi; xi)}n
i=1. The first-order conditions

are then f(Q)− c(xi) = 0 and −c′(xi)qi−1 = 0 (i = 1, 2, . . . , n). Note that the latter condition suggests
that Ci(xN (n); n) becomes non-zero only by the presence of strategic commitment , which motivates our
terminology.
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Figure 1. Distortion Effect and Commitment Effect

The net welfare gain from this change consists of

The change in consumers′ surplus = area Ap∗∗B′ − area Ap∗B

= area Bp∗p∗∗B′,

and

The change in profits = (area B′p∗∗c∗D′+ area Cc∗c∗∗C ′ − ε)
− area Bp∗c∗D,

which, after neglecting terms of the second order infinitesimal, boils down to (area
B′EDD′) + (area Fc∗c∗∗F ′ − ε). It is clear that the first term is nothing other than
our distortion effect, whereas the second term corresponds precisely to our commitment
effect defined by (3.2).

Thus, the distortion effect, which is nothing but the familiar sum of marginal distor-
tions, represents the welfare loss caused by the exercise of firms’ monopolistic power on
consumers. Clearly, an increase in investment that increases the industry’s total supply
will generate a positive distortion effect. On the other hand, the commitment effect mea-
sures the extent to which a firm can extract additional profits by capturing other firms’
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market share by taking advantage of a better third stage game structure via an increase
in investment in xi. The total effect on economic welfare depends on the relative strength
of these conflicting effects.

3.3 In the rest of this section, we shall elucidate that the commitment effect is likely to
dominate the distortion effect, so that the term (∂/∂xi)W

N(xN(n); n) is likely to become
negative, if the number of firms is sufficiently large. In view of (3.5), (3.6), (2.6), (2.7),
(2.11) and (2.12), and noting A(1) and (2.13), the condition for

(∂/∂xi)W
N(xN(n); n) = Ci(x

N(n); n) + Di(x
N(n); n) < 0

can be reduced into

(3.7) 1− (n− 1) ·
{
− (∂/∂xi)q

N
j (xN(n); n)

(∂/∂xi)QN(xN(n); n)

}
< 0,

which can be further reduced into

(3.8) n2 − 2n + (n− 1)δ(QN(xN(n); n)) > 0.

By virtue of A(1), (3.8) holds whenever λ(n) := n2 − 2n + (n − 1)δ0 > 0 is satis-
fied. Let N(δ0) > 0 be the largest root of the quadratic equation λ(n) = 0. Then
(∂/∂xi)W

N(xN(n); n) < 0 holds if n > N(δ0). Thus:

Theorem 1 Under A(1), A(2) and A(3), there exists a positive number N(δ0) such that
(∂/∂xi)W

N(xN(n); n) < 0 holds, viz., the strategic cost-reducing investment is socially
excessive at the margin if n > N(δ0).

An important question still remains. How large is the critical number N(δ0) which
appears in Theorem 1? In the case of concave inverse demand functions, it is easy to see
that N(δ0) = 2. In the case of constantly elastic inverse demand functions, N(δ0) will
increase as the elasticity η of the inverse demand function increases, but for all values of
η satisfying 0 < η < 1, we have 1 < N(δ0) < 2 +

√
2. Thus, N(δ0) remains fairly small

for these important classes of situations.

3.4 It may be useful to graphically illustrate why the number of firms, n, plays an
important role in deciding social excessiveness of investment. Define the third stage
reaction function of firm i by

(3.9) ri(Q−i; x
0
i ) := arg max

qi > 0
{f(qi + Q−i)− c(x0

i )}qi,

where Q−i :=
∑

j 6=i

qj, and an investment profile x0 := (x0
1, x

0
2, . . . , x

0
n) is fixed. Then the

cumulative reaction function Ri(Q; x0
i ) is defined by

(3.10) qi = Ri(Q; x0
i ) if and only if qi = ri(Q− qi; x

0
i ).
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By construction, the industry output in the third stage Cournot-Nash equilibrium QN(x0; n)
is the fixed point of the mapping

n∑
j=1

Rj(Q; x0
j), viz., QN(x0; n) =

n∑
j=1

Rj(Q
N(x0; n); x0

j).

Figure 2 describes the original third stage equilibrium E0 as a point where the curve
n∑

j=1

Rj(Q; x0
j) cuts the 45◦ line.

Suppose now that firm i increases its investment marginally. Then the aggregate

cumulative reaction curve will shift up to
n∑

j=1

Rj(Q; x1
j), where Rj(Q; x1

j) = Rj(Q; x0
j)

for all j 6= i, so that the industry output increases by QN(x1; n) − QN(x0; n), whereas
the output of firm j (j 6= i) decreases by qN

j (x0; n) − qN
j (x1; n), where x1

j = x0
j for all

j 6= i. The ratio between the two, [QN(x1; n)−QN(x0; n)]/[qN
j (x0; n)− qN

j (x1; n)], which
closely approximates − (∂/∂xi)q

N
j (x0; n)/(∂/∂xi)Q

N(x0; n) in (3.7) if an increase of firm
i’s investment is small enough, is provided by the slope of the cumulative reaction curve.

q

Q
45◦

QN(x0; n)

0

E0

QN(x1; n)

qN
j (x1; n)

Rj(Q;x0
j)

E1

qN
j (x0; n)

Σn
k=1Rk(Q;x0

k)

Σn
k=1Rk(Q;x1

k)

Figure 2. Cumulative Reaction Curves

69



Figure 2 describes a situation where the inverse demand function is linear, so that
the reaction curve is also linear whose slope is independent of the number of firms n.
In this case, as n becomes large, (∂/∂xi)W

N(x0; n) clearly becomes negative, and the
equilibrium investment becomes socially excessive at the margin.

3.5 Before closing this section, a final remark is in order. Since our welfare criterion
need not be concave in general, a marginally welfare-improving investment may in fact
be a “wrong” move from the global viewpoint. However, it is possible to compare level
of the second-best investment directly with that of the second stage subgame perfect
equilibrium if our model is parametrizable, viz., the inverse demand function as well as
the cost function is constantly elastic. Quite consistent with our analysis so far, it can
be shown that there exists a critical number of firms as a function of the elasticity η of
the inverse demand function, say n∗(η), such that the subgame perfect equilibrium level
of investment exceeds the second-best level if n > n∗(η). The critical number is given by
n∗(η) := [(η + 3) +

√
{(η + 3)2 − 4(η + 1)}]/2 < η + 3, which remains fairly small for a

wide range of η.

4 Excess Entry in the Long Run

4.1 If the industry is left unregulated for a long time, the first stage free entry equilibrium
with ne firms, viz., {ne,x

N(ne),q
N(xN(ne); ne)} will be attained. What, then, will be

the welfare-improving policy that the government can enforce?
If the government can enforce the marginal cost pricing, it is easy to verify that the

welfare-maximizing policy is to restrict the number of firms to either zero or one and
impose the marginal cost pricing on the operating firm. Namely, we have the following:

Theorem 2 (First-best excess entry). Assume that A(2) holds. Then a small reduction
in the number of firms n unambiguously improves first-best social welfare in the sense
that

(4.1) (d/dn)W (qF (n);xF (n); n) < 0

holds as long as n ≥ 2. Indeed, the first-best number of firms nf is either 0 or 1.

4.2 Since enforcing the marginal cost principle is almost impossible for the actual govern-
ment, we should examine how the second-best welfare function W (qN(xN(n); n);xN(n); n)
will be affected when the number of firms changes by a small amount.

Differentiating W (qN(xN(n); n);xN(n); n) totally with respect to n, we obtain

(4.2) (d/dn)W (qN(xN(n); n);xN(n); n)

= Π i(xN(n); n) + n · {f(QN(xN(n); n))− c(xN
i (n))} · (∂/∂n)qN

i (xN(n); n)

+ n · {C(xN(n); n) + D(xN(n); n)} · xN
i (n).
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Note that the first term in the RHS of (4.2) is zero when it is evaluated at n = ne by
virtue of the definition (2.18) of ne, whereas the second term evaluated at n = ne, viz.,

(4.3) µ(xN(ne); ne) · (∂/∂n)qN
i (xN(ne); ne)

is always negative by virtue of A(1), (2.9) for x = xN(ne) and Lemma 1. Note also
that (4.3) is the crucial term which leads to the excess entry theorem of Mankiw and
Whinston [11] and Suzumura and Kiyono [21] in the context of no strategic commitment.

The third term in the RHS of (4.2) is specific to the oligopoly models with strategic
commitment. Its first component evaluated at n = ne, viz. C(xN(ne); ne), is what we
called the commitment effect in Section 3. Its second component evaluated at n = ne,
viz. D(xN(ne); ne), is the distortion effect.

As was shown in Section 3, C(xN(ne); ne) < 0 and D(xN(ne); ne) > 0, so that the
presence of strategic commitment seems to introduce some ambiguity in signing (4.2). If
we replace A(1) by the following slightly stronger assumption A(1∗), however, we can
establish an unambiguous result.

A(1∗): f(Q) is twice continuously differentiable with f ′(Q) < 0 for all Q ≥ 0 such that
f(Q) > 0. Furthermore, the elasticity of f ′(Q) is constant, say, δ(Q) = δ.10

With this, we can establish:

Theorem 3 (Second-best excess entry at the margin). Assure that A(1∗), A(2) and
A(3) hold. Then a small reduction in the number of firms at the first stage free-entry
equilibrium unambiguously improves the second-best social welfare in the sense that

(4.4) (d/dn)WN(qN(xN(ne); ne);x
N(ne); ne) < 0

holds as long as ne ≥ 1− δ.

Thanks to Theorem 3, under the assumed conditions, the exit of an incumbent firm at
the first stage free-entry equilibrium is welfare-improving at the margin in the second-best
sense even if we do not know where exactly nf and ns are located. Note that the crucial
inequality ne ≥ 1− δ is obviously satisfied if the inverse demand function is concave, so
that δ ≥ 0 holds.

5 Proofs

(a) Proof of Lemma 1

Differentiating (2.9) with respect to n and rearranging terms using α(x; n) and β(x; n),
we obtain

(5.1) {α(x; n) + (n− 1)β(x; n)} · (∂/∂n)qN
i (x; n) = − qN

i (x; n) · β(x; n),

10See Remark 1 following the statement of A(1).
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which yields (2.10). The negative sign of (∂/∂n)qN
i (x; n) is due to A(1) and A(3).

To prove (2.11) and (2.12), we differentiate (2.9) with respect to xi and xj (i 6= j),
respectively, and rearrange terms using ω(x; n) and θ(x; n) to obtain

(5.2) α(x; n) · ω(x; n) + (n− 1) · β(x; n) · θ(x; n) = c′(xi)

(5.3) β(x; n) · ω(x; n) + {α(x; n) + (n− 2)β(x; n)} · θ(x; n) = 0.

Solving (5.2) and (5.3) for ω(x; n) and θ(x; n), we obtain (2.11) and (2.12). The signs of
ω(x; n), θ(x; n) and ∆(x; n) are determined by A(3), (2.6) and (2.7).

(b) Proof of Theorem 1

The sketch of the proof is given in the main text and hence it is omitted.

(c) Proof of Theorem 2

Differentiating W (qF (n);xF (n); n) totally with respect to n, we obtain

(5.4) (d/dn)W (qF (n);xF (n); n) = {f(nqF (n))− c(xF (n))} · qF (n)− xF (n)

+nqF ′(n) · {f(nqF (n))− c(xF (n))}

+nxF ′(n) · {− c′(xF (n)) · qF (n)− 1}.

Invoking (2.20) and (2.21), we are then led to conclude that

(5.5) (d/dn)W (qF (n);xF (n); n) = − xF (n),

which is always negative, as was to be established.

(d) Proof of Theorem 3

Step 1. By virtue of A(1), (2.9) for x = xN(ne), (3.5) and (3.6), it can easily be verified
that the sign of (4.2) coincides with that of

(5.6) Λ(n) := (∂/∂n)qN
i (xN(n); n) + xN ′

i (n) · {ω(xN(n); n) + 2(n− 1) · θ(xN(n); n)}

at n = ne. Invoking Lemma 1, Λ(n) can be further reduced into

(5.7) Λ(n) =
1

αN(n) + (n− 1)βN(n)

·
{
− qN

i (xN(n); n) · βN(n) +
αN(n)− n · βN(n)

αN(n)− βN(n)
· c′(xN

i (n)) · xN ′
(n)

}
,
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where αN(n) := α(xN(n); n) and βN(n) := β(xN(n); n) for short. By virtue of (2.6) and
(2.7) for x = xN(n) and A(1∗), it follows that

(5.8) sgn Λ(n) = sgn [A + B · xN ′
i (n)],

where

(5.9) A = qN
i (xN(n); n) · f ′(QN(xN(n); n)) · (n + δ) < 0

and

(5.10) B = c′(xN
i (n)) · {n(n− 2) + δ(n− 1)}.

Note that A > 0 follows by virtue of (2.8), but the term {n(n− 2) + δ(n− 1)} is positive
only when n > N(δ), as was shown in (3.8).

Step 2. We examine some properties of the second stage payoff function Π i(x; n) with
the purpose of evaluating xN ′

i (n) which appears in (5.8). To begin with, simple yet
complicated computation using (2.2), (2.4), (2.5), A(1∗) and Lemma 1 establishes that

(5.11) Π i
i (x; n) := (∂/∂xi)Π

i(x; n)

= − c′(xi) · qN
i (x; n) · ξ(n)− 1

holds, where

(5.12) ξ(n) := 1 +
n− 1

n
· n + δ

1 + n + δ
> 0

in view of (2.8).
Differentiating (5.11) partially with respect to xi and xj (i 6= j), respectively, we

obtain

(5.13) Π i
ii := (∂2/∂x2

i )Π
i(x; n)

= − ξ(n) · {c′′(xi) · qN
i (x; n) + c′(xi) · ω(x; n)} < 0

(5.14) Π i
ij(x; n) := (∂2/∂xi∂xj)Π

i(x; n)

= − ξ(n) · c′(xi) · θ(x; n)

= ξ(n) · c′(xi) · c′(xi) · (n + δ)

f ′(QN(x; n)) · n · (n + 1 + δ)
< 0 (i 6= j)

where the last equality of (5.14) is obtained in view of (2.6) and (2.7). Note that the
second order condition for profit maximization at the second stage game requires that
Π i

ii(x
N(n); n) < 0 holds, while A(2), Lemma 1 and (5.14) ensure that Π i

ij(x; n) < 0
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(i 6= j) holds for any (x; n). Therefore, the second stage strategies are warranted to be
strategic substitutes if the third stage strategies are.11

Differentiating (5.11) partially with respect to n and nothing that

(5.15) ξ′(n) =
2n2 + 2δn + δ(δ + 1)

n2(1 + n + δ)2

follows from (5.12), we can finally obtain

(5.16) (∂/∂n)Π i
i (x

N(n); n) = c′(xN
i (n)) · qN

i (xN(n); n) · (1− n){2(n + δ)2 + δ}
n2(1 + n + δ)2

.

Step 3. By definition, xN(n) is characterized by

(5.17) Π i
i (x

N(n); n) = 0 (i = 1, 2, . . . , n).

Differentiating (5.17) totally and invoking symmetry, we obtain

(5.18) xN ′
i (n) = − (∂/∂n)Π i

i (x
N(n); n)

Π i
ii(x

N(n); n) + (n− 1)Π i
ij(x

N(n); n)

In view of (5.18), (5.8) is reduced into

(5.19) sgn Λ(n) = sgn

[
AΠii

Πii + (n− 1)Πij

+
(n− 1)A ·Πij −B ·Πin

Πii + (n− 1)Πij

]

where Πii := Π i
ii(x

N(n); n), Πij := Π i
ij(x

N(n); n) and Πin := (∂/∂n)Π i
i (x

N(n); n).
It follows that (5.9), (5.13) and (5.14) assure that first term of the right hand side of

(5.19) is unambiguously negative. Thus, for the sign of Λ(n) to be negative, a sufficient
condition is

(5.20) Γ (n) := (n− 1)A ·Πij −B ·Πin < 0.

Invoking (5.9),(5.13),(5.14) and (5.16), a straightforward calculation yields

(5.21) Γ (n) = qi(n) · {c′(n)}2 · (n− 1) ·Ω(n)

where

(5.22) Ω(n) :=

{
(n + δ)2

n · (n + 1 + δ)
· ζ(n) +

{n(n− 2) + δ(n− 1)} · {2(n + δ)2 + δ}
n2 · (1 + n + δ)2

}
,

qi(n) := qN
i (xN(n); n) and c′(n) := c′(xN

i (n)).

11It is the latter half of A(1∗) that is responsible for this nice property. In general, this property does
not necessarily hold. See Besley and Suzumura [1] and Suzumura [19].
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In view of (5.21), if n > 1, the sufficient condition for Λ(n) to be negative boils
down to the condition that Ω(n) to be negative. In view of (5.12), a straightforward
computation yields that

(5.23) Ω(n) = φδ(n)/[n2 · (n + 1 + δ)2],

where

(5.24) φδ(n) := −4n3 − 8δn2 − δ(5δ − 2)n− δ2(δ + 1).

Step 4. The proof of Theorem 3 is complete if we can show that φδ(n) < 0 as long as
n ≥ 1 − δ. Since φδ(n) < 0 holds for all n > 0 if δ ≥ 0, we have only to examine the
case where δ < 0. With this goal in mind, let n∗(δ) stand for the largest real root of the
cubic equation φδ(n) = 0. The coefficient of the highest order term of this cubic equation
being negative, we have 1 − δ > n∗(δ) if all of φδ(n), φ′δ(n) and φ′′δ(n) are negative at
n = 1− δ. This is indeed the case, as we have

φδ(1− δ) = 2(δ − 2) < 0,

φ′δ(1− δ) = − δ2 + 6δ − 12 < 0,

and

φ′′δ(1− δ) = − 8(3− δ) < 0

for δ < 0. if n ≥ 1 − δ, we have n > n∗(δ), so that we obtain φδ(n) < 0, as was to be
verified.

6 Concluding Remarks

In this chapter, we have examined the welfare performance of oligopoly with strategic
commitments, which culminated into the excess entry results. The second best excess
entry theorem at the margin, which is the main result of this chapter, is based on three
explicit assumptions. The first assumption is on the admissible class of inverse demand
functions. Despite its restrictive nature, we should note that a wide class of demand
functions satisfies this assumption, as it does accommodate all linear inverse demand
functions as well as all constantly elastic inverse demand functions. The second assump-
tion is on the nature of cost reduction technology, which seems to be on the safe ground.
The third assumption is on the nature of strategic interrelatedness of competitive mea-
sures. Within a model of quantity competition, the assumed strategic substitutability
seems to be widely recognized as a normal case. Despite its rather paradoxical implica-
tions, therefore, our welfare verdicts cannot be flatly discarded as pathological. The fact
that our results hold even in the presence of strategic commitments seems to enhance its
relevance rather substantially.
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It goes without saying that there are other implicit assumptions on which our results
hinge. To cite just a few, quantity competition rather than price competition, exclusive
focus on the symmetric equilibria, no uncertainty in cost-reducing R&D, and no product
differentiation and no R&D spillovers can be referred to. It is almost certain, and in some
cases demonstrably certain, that the mileage of our excess entry results are severely
limited by these implicit assumptions. Nevertheless, the fact remains that the arena
where our results do have their bites is in no sense negligible. Presumably, we are in need
for more careful analyses of the role of competition as an efficient allocator of resources.
The purpose of this chapter will be served if it succeeds in bringing this simple point
home.
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