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ABSTRACT

A theoretical curiosity remains in the Huggett [1993] model as to the
possible existence of a unique and degenerate stationary distribution
of agent types. This coincides with the possibility that an equilib-
rium individual state space may turn out to be trivial in the sense
that every agent never escapes the binding common borrowing con-
straint. In this note, we extend and reinforce the proof of Lemma 3 in
Huggett [1993]. By invoking a simple comparative-static argument,
we establish that Huggett’s result of a unique stationary equilibrium
distribution of agents must be one that is nontrivial or nondegener-
ate.
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1. INTRODUCTION

The seminal work of Huggett [1993] showed that there exists a unique stationary dis-

tribution of agent types, given by their individual states of asset and income endowment

pairs. In the setting of Huggett [1993], the key insight on the risk-free rate anomaly aris-

ing from representative agent models, was obtained by an appeal to incomplete asset

markets and precautionary saving motives. This framework was one of the key founda-

tions for further quantitative research using heterogenous agent macroeconomics and is

also part of the standard graduate curriculum [see e.g. Ljungqvist and Sargent, 2006]. In

this class of models, important questions such as asset pricing puzzles [see e.g. Huggett,

1993; Aiyagari, 1994], and fiscal policy and taxation [see e.g. Heathcote, 2005], can now

be seriously addressed.

Proving the existence of a unique stationary distribution of agent types in the model

of Huggett [1993] is vital since the stationary equilibrium risk-free rate depends on this

object. To establish this result, i.e. Theorem 2 in Huggett [1993], certain sufficiency con-

ditions in theorem 2 of Hopenhayn and Prescott [1992] are required to be satisfied by the
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model. One of the requirements of the model is compactness of the agents’ individual

state space. Huggett [1993] showed the existence of a compact individual state space in

any equilibrium where agents are behaving optimally. Intuitively, one needs to show

that each agent indexed by an asset-endowment pair, (a, e) ∈ S, in making their optimal

competitive decisions, would always remain in the set S every period.

However, the question remains open if this equilibrium individual state space S might

turn out to be trivial, in the sense that every agent’s common borrowing constraint binds

forever. If so, the invariant probability measure of agent types will place all mass on

this minimal credit level. We would like to point out that in establishing the result on

the existence of an endogenously compact S by contradiction, Huggett [1993] omitted to

consider that there might be two other valid contrary hypotheses, which leaves open the

current theoretical curiosity.

In this note, we reinforce the proof of Lemma 3 in Huggett [1993] by showing that in

fact, one can rule out one of these two contrary hypotheses toward the construction of

the proof of Lemma 3, by invoking a simple comparative statics argument. We complete

this missing check here. In other words, we establish that Huggett’s result of a unique

stationary equilibrium distribution of agents must be one that is nontrivial or nondegen-

erate. In practice, for plausible calibrations of the model, one does not encounter the

problem of there being a trivial stationary equilibrium.1 Our result serves to confirm the

experience of numerical examples and to provide a general assurance for practitioners

using numerical methods to solve models along the lines of Huggett [1993].

2. HUGGETT’S MODEL

In this section we first revisit the Huggett [1993] model. Then we provide a brief dis-

cussion on the notion of an endogenously compact individual state space and its impli-

cation for the existence of a unique stationary equilibrium distribution of agents.

In the Huggett model, time is discrete, and each period is indexed by t ∈ N :=

{0, 1, ...}.2 The population of agents has mass 1. Each measure zero agent receives a

stream of stochastic endowment of consumption good. Let E = {el , eh}, where eh > el ,

be the set of endowment realizations. Each (et)t∈N is governed by a given Markov chain

(π, π0) on E, where π is the stochastic matrix and π0 the initial unconditional distri-

bution on E. π(e′|e) := Pr{et+1 = e′|et = e} > 0, e′, e ∈ E, is independent of t, and

another agents’ realization of e. Let X = A× E = [a,+∞)× {el , eh}. The parameter a is

interpreted as an exogenous borrowing constraint.

1A complete set of source codes and numerical solutions is available from the author on request.
2As is the usual convention, we may drop the explicit time-t subscript on variables, e.g. x := xt and

x′ := xt+1.
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2.1. An individual’s decision problem. The individual state is x := (a, e) ∈ X. The in-

dividual takes as given the aggregate price q > 0. Suppose in an equilibrium there is

a set S := [a, a]× {el , eh} ⊂ X that generates Borel σ-algebra B(S). The dependence of

the equilibrium q on the aggregate state given by a probability measure ψ on (S,B(S)) is

implicit.3

Each agent chooses consumption (c) and saving (s′). Let the agent’s feasible action

correspondence be Γ(q) : A× E ⇒ B(R+× A), where at each slice of Γ indexed by (x; q),

we have a description of the feasible choice set of an agent currently named x:4

Γ(x; q) =
{
(c, a′) : a + e ≥ c + a′q, c ≥ 0, a′ ≥ a

}
.

Denote (x; q) 7→ v(x; q) ∈ R as an agent’s value function. Each agent’s Bellman equation

is

v(x; q) = max
(c,a′)∈Γ(x;q)

{
u(c) + β ∑

e′∈E
v(a′, e′; q)π(e′|e)

}
, (1)

where β ∈ (0, 1) and u : R+ → R is strictly increasing, strictly concave, and twice

continuously differentiable.

2.2. Compact equilibrium individual state space S ⊂ X. The notion of a stationary

equilibrium is defined in Huggett [1993, p.956]. Given the Markov matrix for the en-

dowment process, π : E → [0, 1], an initial individual state x ∈ S for each agent, and

an optimal decision rule, (x; q) 7→ â(x; q), we can induce a time-invariant probability

measure ψ on the measurable space (S,B(S)) satisfying:

ψ(B) =
∫

S
P(x, B)dψ, ∀B ∈ B(S),

where P : S×B(S)→ [0, 1] is the equilibrium transition probability function.5

In Theorem 1, Huggett [1993] provides some sufficient conditions on the model such

that given q, the solution to each agent’s Bellman equation problem has some nice proper-

ties. Specifically, Theorem 1 in Huggett [1993] establishes that the optimal â : X → [a, ∞)

is continuous, is either strictly increasing in a, if a > a, or is nondecreasing in a if a = a.

Theorem 1 and Lemmata 1-3 in Huggett [1993] tell us that each agent’s optimal deci-

sion function for credit holdings, â : X → [a, ∞), must look something like that in Figure

1. In particular, this decision rule has the following properties:

3In Huggett [1993], since the emphasis is on a notion of recursive stationary equilibrium where q is con-
stant, we don’t have to explicitly carry around the distribution of agent types ψ, as a relevant state variable.
Instead, we only make the agents’ problems dependent on q as a scalar parameter.

4For technical reasons, since A is a continuum, our agent’s decision rules c = c(a, e) and a′ = â(a, e)
need to be measurable functions belonging to Γ(q). Hence we restrict such selections to only measurable
subsets in the image of Γ(q). These measurable subsets are in the Borel σ-algebra, B(R+ × A) generated by
R+ × A 3 (c, a′).

5The details are discussed very nicely in Huggett [1993].
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(1) When the current endowment is el , â(·, el) is well below the 45◦-line in (a, a′)-

space, if the borrowing constraint is not binding (a > a). That is, a low endow-

ment agent who is not currently credit constrained, accumulates credit below the

current level (Lemma 1); and

(2) When the agent has high endowment, eh, there is an asset level, a, such that the

policy function at eh, â(·, eh), crosses the 45◦-line in (a, a′)-space. This is proved by

Lemma 3, which uses both Lemma 1 and Lemma 2.

Thus, in an equilibrium, if there is to be an endogenous a, as shown in Lemma 3 in

Huggett [1993], which is the smallest fixed point satisfying â(a, eh) = a, then it is straight-

forward to deduce that S := [a, a] × {el , eh} is an endogenously compact metric space.

That is, each agent x beginning in S will always stay within S, or the equilibrium asset

decision rule will be â : S→ [a, a].

a′

a

a′ = a â(·, eh)

â(·, el)

a

a

a

FIGURE 1. Characterization of optimal policy function â : X → R. When
e = eh, for each a, â(a, eh) > â(a, el). If â(a, e) ≥ a binds, then â(·, e) is
nondecreasing in a.

Theorem 2 of Huggett, applying theorem 2 in Hopenhayn and Prescott [1992], pro-

vides sufficient conditions for the existence and uniqueness of a unique stationary distri-

bution of agent types, ψ, for a given q. These conditions in turn include the requirement

that S is a compact metric space.

3. A MISSING STEP

In this section, we complete the missing step required to ensure that indeed Huggett’s

endogenous upper bound a on assets is nontrivial. That is, we are required to show that

a < a < ∞.

The aim (in Huggett’s Lemma 3) is to show that there exists a fixed point a satisfying

â(a, eh) = a (and that it is a nontrivial fixed point: a > a). A contrary hypothesis to this

would have three possible cases:
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H1. â(a, eh) < a for a > a and â(a, eh) = a for a = a,

H2. â(a, eh) > a for a > a and â(a, eh) = a for a = a, and

H3. There is no a such that â(a, eh) = a.

These three hypothesis are depicted in Figure 2. In establishing the result on the existence

of an endogenously compact S by contradiction in Lemma 3, Huggett [1993] made only

the contrary hypothesis that there is no a such that â(a, eh) = a (H3).

a′

a

a′ = a
â(·, eh)

â(·, el)

a
a

(A) Case H1

a′

a

a′ = aâ(·, eh)

â(·, el)

a
a

(B) Case H2

a′

a

a′ = a
â(·, eh)

â(·, el)

a
a

(C) Case H3

FIGURE 2. In proving Lemma 3 in Huggett [1993], suppose there is no a
(> a) such that â(a, eh) = a. A priori there may be three possible cases for
the component function â(·, eh) that would satisfy this hypothesis. We can
rule out cases H1 and H2.

It turns out, that only one of these contrary hypotheses is possible (i.e. H3), as was

assumed in Huggett [1993]. However, it remains to be shown that this must be the only

case, as we now show in the following lemma, which implies that â(a, eh) must lie above

a when a = a. Thus, we ensure that we only need to make one contrary hypothesis (H3)

to prove Huggett’s Lemma 3.

Lemma. The decision â(a, e) is strictly increasing in e for all a ≥ a.

Proof. First, we show the case that a current individual state is (a, e). An optimal con-

sumption decision c(a, e) for an agent currently named (a, e) must satisfy the first-order
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condition

uc[c(a, e)] ≥ βq−1E

{
uc[c(â(a, e), e′)]

∣∣∣∣e}, with “=” if â(a, e) > a. (2)

Consider (a, e) = (a, el). We then perturb el to el + ∆e =: eh. We want to show that

â(a, eh) > â(a, el). By Theorem 1 in Huggett [1993], â(a, el) = a. Then (2) evaluated at

(a, e) = (a, el) is

uc[c(a, e)] > βq−1E

{
uc[c(â(a, e), e′)]

∣∣∣∣e}. (3)

Suppose el increases to el + ∆e =: eh and suppose â(a, el + ∆e) = â(a, el) = a. By Lemma

1 in Huggett [1993], this is consistent with the result uc[c(a, el)] = va(a, el) ≥ va(a, eh) =

uc[c(a, eh)]. So either the LHS of (3) declines or remain constant, and by strict concavity

of u, c(a, el) ≤ c(a, eh).

But since u is strictly concave, the agent would prefer to also shift some of the increase

in e towards the next period, and across next-period states. That is, in the RHS of (3),

for each fixed e′ ∈ E, uc[c(â(a, e), e′)] must fall. From the agent’s budget constraint, this

implies that â(a, e) must increase in e. That is, if eh > el , then â(a, eh) > â(a, el) = a, so

then (2) would hold with equality at (a, eh).

Second, consider a > a. By Theorem 1 in Huggett [1993], â(·, e) is strictly increasing

and continuous in a > a. By Lemma 1 in Huggett [1993], â(a, el) < a for a > a. Using

these facts, and since we have shown â(a, eh) > â(a, el) = a, then there exists some a such

that â(a, eh) > a > â(a, el) ≥ a, and for all a, â(a, eh) > â(a, el) ≥ a. �

4. DISCUSSION

The hypotheses H1 (Figure 2.A) and H2 (Figure 2.B) can thus be ruled out since â(·, eh)

must be above the 45◦-line in (a, a′)-space at the point a. By applying our Lemma, the

proof of Huggett’s Lemma 3 is then complete, where we would have ruled out any pos-

sible trivial equilibrium individual state space as well. The idea is that now, given the

Lemma above, we can just assume one case – that â(a, eh) > a for all a, so that there is no

fixed point for â(a, eh) in (a, a′)-space, but then arrive at a contradiction. The conclusion

would have to be that there is an a∗ > a that is the fixed point, and we can take the least

fixed point to be a∗ = a, the endogenous upper bound on assets. Finally, given these re-

sults, Theorem 2 of Huggett follows to establish existence and uniqueness of a stationary

distribution of agent types, which is now guaranteed to be nondegenerate.
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