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Abstract

It has been shown in the literature that if the individual consumers have constant but
unequal time discount rates, then the representative consumer has discount rates that is
a strictly decreasing function of time, just as is the case of hyperbolic discounting. No
contribution, however, has so far established a general relationship between the degree of
heterogeneity of individual consumers’ subjective discount rates on the one hand and the
degree of dynamic inconsistency of the representative consumer’s discount rate function on
the other. In this paper, we show that the more convex the cumulant generating function of
the approximately wealth-weighted distribution of individual consumers’ subjective discount
rates is, the more dynamically inconsistent the representative consumer is in the sense of
Prelec (2004), and vice versa. Applications to the term structure of interest rates are
explored and the special case where the distributions of subjective discount rates are taken
from an exponential family is investigated.

JEL Classification Codes: D51, D53, D61, D81, D91, E43, G12.

Keywords: Discount factor, discount rate, representative consumer, term structure of
interest rates, exponential family.

1 Introduction

Asset transactions are often motivated by the heterogeneity of consumers. More risk averse
consumers try to unload the risks they are faced with and less risk averse ones will take them
over with premiums. Optimistic consumers invest more in risky assets, while pessimistic con-
sumers invest mostly into riskless bonds. More patient consumers save more to enjoy higher
consumptions in the future, and impatient consumers may well borrow to enjoy higher con-
sumption immediately. The raison d’être of asset markets is precisely to cater for diverse needs
for asset transactions by heterogeneous consumers.

Heterogeneity in consumers’ characteristics have implications not only on risk and intertem-
poral allocations but also on asset pricing. The impact on asset pricing can probably be best
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understood by constructing the representative consumer. The representative consumer is a fic-
titious consumer whose marginal utility process, evaluated along the aggregate consumption
process, serves as a state price deflator. For example, the representative consumer of individual
consumers having utility functions of constant and unequal relative risk aversion has a utility
function of strictly decreasing relative risk aversion (Franke, Stapleton, and Subrahmanyam
(1999) and Hara, Huang and Kuzmics (2007)); and the representative consumer of individual
consumers having constant but unequal subjective discount rates has discount rates that are a
strictly decreasing function of time (Weitzman (2001) and Gollier and Zeckhauser (2005)). The
consequences of these are that the derivative assets with convex payoff functions is underesti-
mated if the coefficients of constant relative risk aversion are erroneously assumed to be equal
(Franke, Stapleton, and Subrahmanyam (1999) and Hara, Huang, and Kuzmics (2007)); and
that the term structure of interest rates is more downward sloping in the case of heterogeneous
subjective discount rates than in the case of homogeneous subjective discount rates.

Among these results, the case of heterogeneous subjective discount rates is of particular
interest. The reason is that in that case, the representative consumer’s discount rates are de-
creasing, while in the literature of the representative-consumer models of asset pricing, most
notably that of Mehra and Prescott (1985), the discount rates are almost universally assumed
to be constant, presumably because it has been often assumed for individual consumers. Re-
call that assuming constant discount rates is equivalent to assuming dynamically consistency.
Although the postulate of dynamic consistency is highly relevant (for both analytical and em-
pirical reasons) to individual consumers and their optimization problems, it is not so for the
representative consumer, because he is a fictitious entity and does not solve any optimization
problem.1 Hence the decreasing discount rates for the representative agent, which emerges from
heterogeneous subjective discount rates, deserve fuller analysis.

While Weitzman (2001) and Gollier and Zeckhauser (205) showed that the heterogeneity in
individual consumers’ subjective discount rates gives rise to a dynamically inconsistent repre-
sentative consumer, they did not clarify how the degree of heterogeneity is related to the degree
of dynamic inconsistency. In particular, they do not tell us whether a more heterogeneous
economy give rise to a more dynamically inconsistent representative consumer. If any theoreti-
cal result allowed us to compare a heterogeneous economy only with a homogeneous economy,
then that would not be of much use, because, after all, the real-world asset markets involves
heterogeneous consumers, and we would have no reliable theoretical result to compare one het-
erogeneous economy with another. Without such a result, we would be left unsure whether a
homogeneous economy could be so singular that no generalization should be drawn from the
homogeneous-economy case to the heterogeneous economy case.

The purpose of this paper is to give a precise formulation to show that the more hetero-
geneous the subjective discount rates of the individual consumers are, the more dynamically
inconsistent the representative consumer is. To do so, we need to give a notion of the “more dy-
namically inconsistent than” relation and the “more heterogeneous than” relation, between two

1The situation is quite different for committee problems, analyzed by Jackson and Yariv (2011), for example,
where the committee itself has to arrive at a decision.
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heterogeneous economies. For the former, we use the notion by Prelec (2004), which was intro-
duced for a single decision maker having a utility function over sequences of “dated outcomes”.
For the latter, we introduce, following Jouini and Napp (2007, Lemma 4.1), the notion of an
approximate wealth-weighted distribution of subjective discount rates of individual consumers.
As it is a probability measure on the strictly positive part R++ of the real line, we can define
its cumulant-generating function on the non-positive part −R+ of the real line. Then our main
result (Theorem 2) shows that the more convex the cumulant-generating function of the wealth-
weighted distribution of discount rate is, the more dynamically inconsistent the representative
consumer is, and the converse also holds. To understand the convexity assumption, recall that
the first and second derivatives of the cumulant-generating function at s ∈ −R+ coincide with
the mean and variance of the probability measure of which the density function with respect to
the wealth-weighted distribution of discount rates is proportional to the exponential function
q 7→ exp(sq). Hence its curvature, the ratio of the second derivative to the first derivative,
at s is the ratio of the variance to the mean of the probability measure with density function
q 7→ exp(sq), which can be regarded as the degree of the heterogeneity of the distribution of
subjective discount rates. As the convexity of the cumulant-generating function is measured by
its curvatures, our main result, indeed, formalizes the notion that the more heterogeneous the
subjective discount rates are, the more dynamically inconsistent the representative consumer
is.

A weaker notion of the more-dynamically-inconsistent relation is, as it turns out, the single-
crossing property of the discount rate functions. To be more specific, if the representative agent
is more dynamically inconsistent in one economy than in another economy, then the graph of
the representative consumer’s discount rates, as a function of time, in the first economy crosses
that in the second from the above. This weaker notion is sufficient to derive some interesting im-
plications on asset pricing, and can be derived from a weaker condition on cumulant-generating
functions. Indeed, Theorems 4 and 5 show that the cumulant-generating functions of two
economies satisfy the single-crossing property if and only if the forward-rate curves and the
yield curves satisfy the single-crossing property as well.

If the wealth-weighted distributions of individual consumers’ subjective discount rates belong
to some parametric family, the task of determining whether one such distribution has a more
convex cumulant-generating function than another is relatively easy. In Section 5, we define
a quasi log-linear family of distributions, and give a sufficient condition for the cumulant-
generating function of one distribution in such a family to be more convex than that of the
other, and also for the two cumulant-generating functions to have the single-crossing property.
A natural exponential family is a quasi log-linear family. The family of Gamma distributions, as
well as those of binomial, negative binomial, and Poisson distributions, is also a quasi log-linear
family. The results of Section 5, therefore, can be applied to many types of distributions of
subjective discount rates.

The rest of this paper is organized as follows. The setup and preliminary results are presented
in Section 2. The main result (Theorem 2) is stated and proved in Section 3. In Section 4, this
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and other results are applied to the term structure of interest rates are provided. The analysis
of quasi log-linear families are explored in Section 5. The results are summarized and a future
research topic is suggested in Section 6.

2 Setup and Preliminary Results

2.1 Representative Consumer

The economy is subject to uncertainty, which is represented by a probability space (Ω,F , P ).
The time span is R+ = [0,∞), which is of continuous time and infinite length, although it
could be [0, T ] with 0 < T <∞, which is of finite length. The gradual information revelation is
represented by a filtration (Ft)t∈R+

. There is only one type of good on each time and state.2

We allow the number of consumers present in the economy to be finite or infinite. Formally,
we let (A,A , ν) be a finite measure space of (names of) consumers. If A is a finite set, A is the
power set of A, and ν is the counting measure on A, then the consumption sector consists of
finitely many consumers. If, on the other hand, A is the unit interval [0, 1], A is the Borel σ-field
B([0, 1]), and ν is (the restriction of) the Lebesgue measure on B([0, 1]), then the consumption
sector consists of infinitely many consumers, each of whom is negligible in size relative to the
total population of the economy. For each B ∈ A , ν(B) is the proportion o consumers in B

relative to the entire consumption sector.
We assume that the consumers have time-additive expected utility functions over consump-

tion processes, which exhibit constant and equal relative risk aversion, and constant but possibly
unequal discount rates. Formally, let γ > 0 and u : R++ → R satisfy u′(x) = x−γ for every
x ∈ R++. Let ρ : A → R++ be measurable, where R++ is endowed with the Borel σ-field
B (R++). Then the utility function Ua of consumer a over consumption processes is defined by

Ua(ca) = E

(∫ ∞
0

exp(−ρ(a)t)u(cat ) dt
)
,

where ca = (cat )t∈R+
.3,4

To find a Pareto efficient allocation of a given aggregate consumption process c = (ct)t∈R+

and its supporting (decentralizing) state-price deflator, it is sufficient to let λ : A→ R++ be a

2Just as the analysis of Gollier and Zeckhauser (2005), the subsequent analysis would still be valid even in
the absence of uncertainty. Although I could simplify our model by restricting our attention to a deterministic
economy, I have chosen to incorporate uncertainty to make our model immediately applicable to asset pricing
theory.

3This and other integrals in the subsequent analysis need not be well defined without no additional assumptions
on ca and other stochastic processes. But the subsequent argument depends only on the first-order conditions
of (utility or social welfare) maximization problems, which must necessarily hold whenever there is a solution to
the problem under consideration. We shall therefore be implicit about these additional assumptions.

4Although the assumption of constant and equal relative risk aversion is quite stringent, there is a good
reason to restrict our attention to this case. In fact, if consumers had unequal coefficients of constant relative
risk aversion, then the representative consumer’s utility function would not be a product of a function of time t
and a function of current consumptions ct, and, hence, his discount factor function would not be well defined.
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measurable function and consider the constrained maximization problem

max
(ca)a∈A

∫

A
λ(a)Ua (ca) dν(a)

subject to
∫

A
ca dν(a) = c.

(1)

The objective function of this constrained maximization problem is additively separable across
time and states:

∫

A
λ(a)Ua (ca) dν(a)

=
∫

A
λ(a)E

(∫ ∞
0

exp(−ρ(a)t)u(cat ) dt
)

dν(a)

=E

(∫ ∞
0

∫

A
λ(a) exp(−ρ(a)t)u(cat ) dν(a) dt

)

=
∫

Ω×R+

(∫

A
λ(a) exp(−ρ(a)t)u(cat (ω)) dν(a)

)
d (P ⊗ η) (ω, t),

where η is the Lebesgue measure. The constraint,
∫
A c

a dν(a) = c, is, of course, separable across
time and states. To find the solution to the constrained maximization problem, therefore, it
suffices to denote by I the set of all integrable functions defined on A and taking values in
R++ and solve

max
ι∈I

∫

A
λ(a) exp(−ρ(a)t)u(ι(a)) dν(a)

subject to
∫

A
ι(a) dν(a) = x.

(2)

for every (x, t) ∈ R++ ×R+.
If there is a solution to (2), it must be essentially unique with respect to ν because u is

strictly concave. Assuming its existence, we denote the unique solution by k(x, t) ∈ I and
write ka(x, t) instead of k(x, t)(a). Then, for every (x, t), by the first-order condition for the
solution to (2),

fa(x, t) =
(λ(a) exp(−ρ(a)t))1/γ

h(t)
x, (3)

for almost every a ∈ A, where

h(t) =
∫

A
(λ(a) exp(−ρ(a)t))1/γ dν(a). (4)

This shows that the mutual fund theorem holds at each time t across states, but not across
time, because the consumption share (h(t))−1 (λ(a) exp(−ρ(a)t))1/γ depends on t unless ρ is an
essentially constant function of a, that is, all consumers’ discount rates are equal.

The representative consumer’s felicity function v : R++ ×R+ → R is defined as the value
function of (2):

v(x, t) =
∫

A
λ(a) exp(−ρ(a)t)u(fa(x, t)) dν(a). (5)
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His utility function over the aggregate consumption processes is defined through time additivity
by

U(c) = E

(∫ ∞
0

v(ct, t) dt
)
. (6)

It follows from (3) that
v(x, t) = d(t)u(x)

for every t ∈ R+, where

d(t) = (h(t))γ =
(∫

A
(λ(a) exp(−ρ(a)t))1/γ dν(a)

)γ
. (7)

Note that the representative consumer too has constant relative risk aversion equal to γ. The
function d : R+ → R is the representative consumer’s discount factor function. In order
for v (and, thus, U) to be well defined, it is necessary and sufficient that h(0) < ∞, because
exp(−ρ(a)t) ≤ 1 for every a ∈ A and every t ∈ R+. This is equivalent to saying that the function
a 7→ (λ(a))1/γ is integrable with respect to ν. By multiplying a constant to λ if necessary, we
can assume that

∫
A(λ(a))1/γ dν(a) = 1. Then d(0) = 1 and d is strictly decreasing. By the

dominated convergence theorem, d is continuous and satisfies d(t)→ 0 as t→∞.
Define the representative consumer’s discount rate function r : R+ → R++ by r(t) =

−d′(t)/d(t), then
d(t2)
d(t1)

= exp
(
−
∫ t2

t1

r(t) dt
)

whenever 0 ≤ t1 < t2. Thus r represents the representative consumer’s continuously com-
pounded instantaneous subjective discount rate as a function of time. Unlike the case of indi-
vidual consumers, this is not constant but varies with t unless all individual consumers have
the same discount rate.

Although we analyze the Pareto efficient allocations, if the asset markets are complete, then
our analysis is applicable to the equilibrium allocations and asset prices. This is because the
first welfare theorem holds in complete markets, so that the equilibrium allocations are Pareto
efficient and the equilibrium asset prices are given by the marginal utility process. Since u is
concave, the second welfare theorem also holds, so that every Pareto efficient allocation is an
equilibrium allocation for some distribution of initial endowments. Hence an analysis of Pareto
efficient allocations is nothing but an analysis of equilibrium allocations.

2.2 Comparison of discount factor functions

Prelec (2004) introduced an at-least-as-decreasingly-impatient-as relation between two utility
functions over timed consumptions, that is, functions of the form d(t)u(x) defined over con-
sumption levels x consumed at time t, where d : R+ → (0, 1] is strictly decreasing and satisfies
d(0) = 1, and u : R+ → R+ is strictly increasing and satisfies u(0) = 0. The following def-
inition is a variant of the relation, is concerned with discount factor functions, rather than
utility functions over timed consumptions, and which is equivalent to Prelec’s definition if u is
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continuous.

Definition 1 A discount factor function d1 is at-least-as-decreasingly-impatient-as another dis-
count factor function d2 if for every (t0, t1, t2, s) ∈ R3

+ ×R,

d2(t0 + t1)
d2(t0)

≥ d2(t0 + t1 + t2 + s)
d2(t0 + t2)

(8)

whenever
d1(t0 + t1)
d1(t0)

=
d1(t0 + t1 + t2 + s)

d1(t0 + t2)
. (9)

To understand this definition, first compare the two ratios, d1(t0 +t1)/d1(t0) and d1(t0 +t1 +
t2)/d1(t0 + t2). The former is the discount factor that d1 applies to the time interval [t0, t0 + t1],
and the latter is the discount factor that d1 applies to the time interval [t0 + t2, t0 + t1 + t2].
Since they are both applied to time intervals of length t1, they would be equal if d1 exhibited
exponential discounting, that is, if there were a ρ̄ > 0 such that d1(t) = exp(−ρ̄t) for every
t ∈ R+.5 However, they can be different, and, more specifically, the former is smaller than the
latter if the corresponding discount rate function is decreasing over time, just as in the case
of hyperbolic discounting. To compensate the difference between the two ratios, we add an
interval of length s (which is positive if the discounting rate function is decreasing over time,
but negative if it is increasing) to the terminal time t0 + t1 + t2 of the interval, so that the
discount rate that d1 applies to [t0 + t2, t0 + t1 + t2 + s] is equal to the discount rate that d1

applies to [t0, t0 + t1], as shown in (9). The length s can, therefore, be considered as a measure
of decreasing impatience of d1. Then (8) states that s may too large for d2, so that the discount
factor that d2 applies to [t0 + t2, t0 + t1 + t2 + s] may be smaller than the discount factor that
d2 applies to the time interval [t0, t0 + t1]. In this sense, the impatience of d1 decreases at least
as rapidly as that of d2 as the time interval under consideration is shifted into a more distant
future. This is exactly the idea that Definition 1 embodies.

Prelec (2004, Proposition 1) proved the following equivalence on the at-least-as-decreasingly-
impatient-as relation.

Theorem 1 (Prelec (2004)) Let d1 and d2 be thrice differentiable discount factor functions
and r1 and r2 be the corresponding discount rate functions. Then the following two conditions
are equivalent.

1. d1 is at least as decreasingly impatient as d2.

2. −r′1(t)/r1(t) ≥ −r′2(t)/r2(t) for every t ∈ R+.

Thanks to this theorem, to determine the ranking of the degree of decreasing impatience
between two discount factor functions, it is sufficient to compare the rates of decrease of the
corresponding discount rate functions. In the subsequent analysis, we identify how the rate
of decrease of the representative consumer’s discount rate function is related to the degree of
heterogeneity of individual consumers’ discount rates.

5Then both of the two ratios are equal to exp(−ρ̄t1).
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3 Analysis

3.1 Discount rates in an economy

As we have mentioned earlier, we can assume that
∫

A
(λ(a))1/γ dν(a) = 1.

Define a probability measure µ on (R++,B(R++)) by letting

µ(B) =
∫

ρ−1(B)
(λ(a))1/γ dν(a) (10)

for every B ∈ B(R++). If all the ρ(a)’s were equal, then (3) implies that at the solution to
the maximization problem (2), consumer a would consume fraction (λ(a))1/γ of the aggregate
consumption at any time in any state. Thus the fraction (λ(a))1/γ can be considered as pre-
senting the wealth share of consumer a in the case of homogeneous impatience. In the case of
heterogeneous impatience, however, the consumption share is not constant across time, and the
fraction (λ(a))1/γ does not coincide with the wealth share, which is determined by evaluating
the solution of (2) by the Lagrange multipliers associated with its constraints.6 Yet, according
to Jouini and Napp (2007, Lemma 4.1), the fraction (λ(a))1/γ approximates the wealth share,
and, as such, for each B ∈ B(R++), µ(B) can be thought as approximating the proportion
of the wealth owned by those who have discount rates in B. We can therefore think of µ as
approximating the distribution of discount rates in terms of wealth shares.

By (7),

d(t) =
(∫

R++

exp
(
−qt
γ

)
dµ(q)

)γ
.

Let K be the cumulant-generating function of µ, that is,

K(s) = ln
(∫

R++

exp (sq) dµ(q)
)

(11)

for every s ∈ R for which the integral on the right-hand side is finite. Note that if s ≤ 0, then
the integral is finite, because, then, exp (sq) ≤ 1 for every q ∈ R++.

It is well known if the first two moments exist (are finite), then K is twice differentiable,
with K ′(0) equal to the mean of µ and K ′′(0) equal to the variance of µ. Denote by µ(s) the
probability measure on R++ such that

dµ(s)
dµ

(q) = exp (sq −K(s))

for every q ∈ R++. Then, by Morris (1982, Section 2), for every s, K ′(s) and K ′′(s) are equal
to the mean and variance of µ(s). Thus, K ′(s) > 0 for every s, and, unless µ is concentrated

6Since the solution is a Pareto-efficient allocation, the second welfare theorem implies that it is an equilibrium
allocation under some price system. The Lagrange multipliers constitute such a price system.
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on a single point, K ′′(s) > 0 for every s. Hence K ′′(s)/K ′(s) is the ratio of the variance to the
mean, and can be considered as the measure of dispersion of the probability measure µ(s).

Another interpretation of the ratio K ′′(s)/K ′(s) can be given in terms of the variance
function, introduced by Morris (1982, Section 2). Assume that µ is not concentrated on a
single point. Then K ′′(s) > 0 for every s, and hence K ′ is a one-to-one function from the set
of s for which K(s) is well defined (finite) to R+. Denote by (K ′)−1 its inverse function, of
which the domain is the range of K ′. Then define the variance function V = K ′′ ◦ (K ′)−1.
This is the function that maps the mean to the variance of distributions in the family {µ(s) |
K(s) is well defined}. If m = K ′(s), then

K ′′(s)
K ′(s)

=
V (m)
m

. (12)

Thus, K ′′(s)/K ′(s) can be interpreted as the slope of the chord connecting the point corre-
sponding to µ(s) on the graph of V and the origin of R2.

The following proposition gives the fundamental relation between the representative con-
sumer’s discount rate function and the cumulant generating function of the approximate wealth-
weighted distribution of individual consumers’ discount rates.

Proposition 1 For every t ∈ R+,

r(t) =K ′
(
− t
γ

)
, (13)

r′(t) = − 1
γ
K ′′
(
− t
γ

)
, (14)

−r
′(t)
r(t)

=
1
γ

K ′′ (−t/γ)
K ′ (−t/γ)

. (15)

Proof of Proposition 1 By (7),

ln d(t) = γK

(
− t
γ

)
.

By differentiating both sides with respect to t, we obtain (13). The other two equalities can be
obtained from (13). ///

3.2 Comparison of discount rates in two economies

Now consider two economies, n = 1, 2, each with the space (An,An, νn) of (names of) consumers
and a weighting function λn : An → R++ satisfying

∫
An

(λn(a))1/γ dνn(a) = 1. Define, for
each n, the discount rate function rn : R+ → R++, the probability measure µn on R++,
and the cumulant-generating function Kn analogously to (10) and (11), using (An,An, νn) and
λn : An → R++.

The following theorem is immediately obtained from (15) in Proposition 1.
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Theorem 2 The following two conditions are equivalent.

1. For every t ≥ 0, −r′1(t)/r1(t) > −r′2(t)/r2(t).

2. For every s ≤ 0, K ′′1 (s)/K ′1(s) > K ′′2 (s)/K ′2(s).

The first condition of this theorem states that the representative consumer of the first economy
is more dynamically inconsistent than the representative consumer of the second economy. Since

d
dt

(
r1(t)
r2(t)

)
=
r1(t)
r2(t)

(
r′1(t)
r1(t)

− r′2(t)
r2(t)

)
,

it is equivalent to the monotone likelihood ratio condition, in that r1(t)/r2(t) is a strictly de-
creasing function of t. The second condition states that the cumulant-generating function of
the distribution, measured in terms of the wealth held, of individual consumers’ discount rates
in the first economy is more convex than in the second economy. This condition is equivalent
to saying that the variance divided by the mean of the individual consumers’ discount rates
is higher in the first economy than in the second whenever their distribution is transformed
by a negative exponential density function. The theorem, then, asserts that the representative
consumer is more dynamically inconsistent if and only if the cumulant-generating function of
individual consumers’ discount rates is more convex.

The next theorem deals with weaker conditions, although they are still useful to investigate
the term structure of interest rates.

Theorem 3 The following two conditions are equivalent.

1. For every t ≥ 0, if r1(t) = r2(t), then r′1(t) < r′2(t).

2. For every s ≤ 0, if K ′1(s) = K ′2(s), then K ′′1 (s) > K ′′2 (s).

The condition in the first part of this theorem implies the single-crossing property, in that r1

crosses r2 at most once from above: if r1(t0) = r2(t0), then r1(t) < r2(t) for every t > t0, and
r1(t) > r2(t) for every t < t0. That is, the discount rate in the first economy is higher than in
the second up to a time, after which the former is lower. The second part is the single-crossing
property of the K ′n, where K ′1 crosses K ′2 at most once from below. This condition is equivalent
to saying that if the distributions of the individual consumers’ discount rates are transformed
by a negative exponential density function so that the means with respect to the transformed
distribution are equal in the two economies, then the variance is higher in the first economy
than in the second. This theorem follows directly from (13) and (14).

The following proposition gives an implication of Theorem 3 on the representative consumer’s
discount factor.

Proposition 2 Suppose that for every s ≤ 0, if K ′1(s) = K ′2(s), then K ′′1 (s) > K ′′2 (s). Then the
function t 7→ d1(t)/d2(t) is either strictly decreasing everywhere, strictly increasing everywhere,
or strictly decreasing up to some time, beyond which it is strictly increasing. Moreover, if there
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is a t1 > 0 such that d1(t1) = d2(t1), then it is strictly decreasing up to some time, beyond which
it is strictly increasing.

Proof of Proposition 2 Since d1(0) = d2(0) = 1,

d1(t)
d2(t)

= exp
(∫ t

0
(−r1(τ) + r2(τ)) dτ

)
. (16)

Thus, if r1(t) > r2(t) for every t > 0, then d1/d2 is strictly decreasing; and if r1(t) < r2(t) for
every t > 0, then d1/d2 is strictly increasing. Suppose that for every s ≤ 0, if K ′1(s) = K ′2(s),
then K ′′1 (s) > K ′′2 (s). Suppose that there is a t0 > 0 such that r1(t0) = r2(t0). Theorem 3
implies that r1(t) > r2(t) for every t < t0 and r1(t) < r2(t) for every t > t0. Since

d
dt

(
d1(t)
d2(t)

)
=
d1(t)
d2(t)

(−r1(t) + r2(t)) ,

d1/d2 is strictly decreasing on [0, t0] and strictly increasing on [t0,∞).
Suppose that there is a t1 > 0 such that d1(t1) = d2(t1). Then, by (16),

∫ t0

0
(−r1(t) + r2(t)) dt = 0.

Since the rn are continuous, there is a t0 ∈ (0, t1) such that −r1(t0) + r2(t0) = 0. We can then
apply the argument in the previous paragraph to conclude that d1(t)/d2(t) is strictly decreasing
up to t0 > 0, beyond which it is strictly increasing. ///

4 Term structure of interest rates

In this section, we explore the implication of the result in Section 3 on the term structure of
interest rates. In particular, we consider the term structures of the two economies of which the
cumulant-generating functions for the distribution of individual consumers’ discount rates cross
each other at most once, and compare the yield curves and forward rates.

4.1 Term structure of an economy

The representative consumer’s marginal utility process (d(t)u′(ct))t∈R+
, evaluated at the aggre-

gate consumption process c = (ct)t∈R+ , serves as a state price process. This means that the
price at time t1, relative to the current consumption, of the discount bond with maturity t2 > t1

is equal to

Et1

(
d(t2)u′(ct2)
d(t1)u′(ct1)

)
=
d(t2)
d(t1)

Et1

(
u′(ct2)
u′(ct1)

)
= exp

(
−
∫ t2

t1

r(t) dt
)
Et1

(
u′(ct2)
u′(ct1)

)
. (17)
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We denote this price by B(t1, t2). The yield to maturity, at time t1, of the discount bond with
maturity t2 > t1 is equal to

− 1
t1 − t2 lnB(t1, t2) =

1
t2 − t1

∫ t2

t1

r(t) dt− 1
t2 − t1 lnEt1

(
u′(ct2)
u′(ct1)

)
. (18)

We denote this g(t1, t2).
Another rate that we are interested in is the instantaneous forward rate, determined at time

t1, for the delivery of the about-to-mature bond at time t2 is equal to

− ∂

∂t2
lnB(t1, t2) = r(t2)− d

dt2
lnEt1

(
u′(ct2)
u′(ct1)

)
,

if
Et1

(
u′(ct2)
u′(ct1)

)
(19)

is a differentiable function of t2. We denote this by f(t1, t2).

4.2 Term structures of two economies

Let d1 and d2 be the discount factor functions derived from two economies, with the cumulant-
generating functions K1 and K2. Let r1 and r2 be the corresponding discount rate functions.
For each = 1, 2, let Bn, gn, and fn be the corresponding bond prices, yields to maturity, and
instantaneous forward rates. Then

B1(t1, t2)
B2(t1, t2)

= exp
(
−
∫ t2

t1

(r1(t)− r2(t)) dt
)
,

g1(t1, t2)− g2(t1, t2) =
1

t2 − t1

∫ t2

t1

(r1(t)− r2(t)) dt, (20)

f1(t1, t2)− f2(t1, t2) = r1(t2)− r2(t2). (21)

Note that while the Bn(t1, ·), gn(t1, ·), and fn(t1, ·) are, in general, stochastic processes (because,
for each fixed t1, (19) is a stochastic process in t2), none of the above is stochastic. Moreover,
the difference in the instantaneous forward rates, (21), does not depend on the time t1 at which
it is evaluated.

Theorem 4 Suppose that for every s ≤ 0, if K ′1(s) = K ′2(s), then K ′′1 (s) > K ′′2 (s). Then for
every t1 ≥ 0 and every t2 > t1, if f1(t1, t2) = f2(t1, t2), then ∂f1(t1, t2)/∂t2 < ∂f2(t1, t2)/∂t2.

This theorem states that if the cumulant-generating functions of the distributions of discount
rates of two economies have the single-crossing property, then so does the instantaneous forward
rates, that is, if f1(t1, t2) = f2(t1, t2), then f1(t1, t) < f2(t1, t) for every t > t2 and f1(t1, t) >
f2(t1, t) for every t ∈ [t1, t2). In words, if the two economies have an equal instantaneous
forward rate applicable to some future time, then the instantaneous forward rate applicable to
any earlier time is higher, and that applicable to any later time is lower, in the first economy
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than in the second. Theorem 4 can be proved by using Theorem 3 and (21).
Theorem 4 compares the instantaneous forward rates, in the two economies, determined at

a fixed time t1 but with a variable delivery time t2. Another comparison worth exploring is the
instantaneous forward rates, with a fixed time to maturity, say τ , but with a variable time t1
at which the rates are determined. What this means, in symbols, is how

f1(t1, t1 + τ)− f2(t1, t1 + τ) (22)

depends on t1, when τ is a positive constant. In fact, by (21), (22) is equal to r1(t1+τ)−r2(t1+τ),
which, when t1 varies, behaves in the same way as r1(t2)−r2(t2) when t2 varies. We can conclude,
therefore, that the instantaneous forward rates in two economies, with a fixed time to maturity
but with a variable time at which the rates are determined, also has the single-crossing property.

The next theorem shows the single-crossing property for the yields to maturity.

Theorem 5 Suppose that for every s ≤ 0, if K ′1(s) = K ′2(s), then K ′′1 (s) > K ′′2 (s). Then for
every t1 ≥ 0 and every t2 > t1, if g1(t1, t2) = g2(t1, t2), then ∂g1(t1, t2)/∂t2 < ∂g2(t1, t2)/∂t2.

Proof of Theorem 5 By (20) and a straightforward calculation,

∂g1

∂t2
(t1, t2)− ∂g1

∂t2
(t1, t2) =

1
t2 − t1 ((r1(t2)− r2(t2))− (g1(t1, t2)− g2(t1, t2))) .

Thus, if g1(t1, t2) = g2(t1, t2), then

∂g1

∂t2
(t1, t2)− ∂g1

∂t2
(t1, t2) =

1
t2 − t1 (r1(t2)− r2(t2)) , (23)

and, again by (20), ∫ t2

t1

(r1(t)− r2(t)) dt = 0.

Thus, there exists a t0 ∈ (t1, t2) such that r1(t0) = r2(t0). By the single-crossing property of the
K ′n and Theorem 2, the rn also have the single-crossing property. Since t2 > t0, r1(t2) < r2(t2).
By (23),

∂g1

∂t2
(t1, t2)− ∂g1

∂t2
(t1, t2) < 0.

///

5 Quasi-log-linear families

If the distributions of individual consumers’ discount rates are taken from a family of some
special type, then the cumulant-generating function K admits a simple expression. In this
section, we explore implications of the expression and present four examples.
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5.1 General results

First, we give the definition of such a family.

Definition 2 A family M of probability measures on (R++,B(R++)) is a quasi-log-linear
family if there exist a σ-finite measure Λ on R++, a non-negative integer L, an open subset Θ
of R, an open subset Ξ of RL, and two mappings g : Ξ×R++ → R and h : Θ × Ξ → R such
that:

1. h(·, ξ) : Θ→ R is twice differentiable for every ξ ∈ Ξ;

2. for every probability measure µ on (R++,B(R++)), µ ∈M if and only if there exists a
(θ, ξ) ∈ Θ× Ξ such that the function

q 7→ exp (θq + g(ξ, q) + h(θ, ξ)) (24)

from R++ into R++ is a version of the Radon-Nikodym derivative dµ/dΛ; and

The name “quasi-log-linear” comes from the fact that the logarithm of the version of the
Radon-Nikodym derivative has a linear term θq. If L = 0, then (24) is reduced to

q 7→ exp (θq + g(q) + h(θ)) . (25)

This is what Morris (1982) defined as a natural exponential family. Thus a quasi-log-linear
family is a multi-dimensional extension, where the linear term θ1q is retained. Also, if, for each
` = 0, 1, . . . , L, there exists a g` : R++ → R such that

g(ξ, q) = g0(q) +
L∑

`=1

ξ`g`(q)

for every (ξ, q) = (ξ1, . . . , ξL, q) ∈ Ξ×R++, then (24) is a canonical expression of an exponential
family. We will see in the next subsection that this extension allows us to compare more
distributions and derive rankings in terms of the at-least-as-decreasingly-impatient-as relation.

Since every µ ∈ M has a strictly positive (version of the) Radon-Nikodym derivative, it
is equivalent to the reference measure Λ. Thus, the probability measures in M are equivalent
to one another. Hence, for all µ1 ∈ M and µ2 ∈ M , corresponding to (θ1, ξ1) ∈ Θ × Ξ and
(θ2, ξ2) ∈ Θ× Ξ, the Radon-Nikodym derivative dµ1/dµ2 exists and the function

q 7→ exp (θ1q + g(ξ1, q) + h(θ1, ξ1))
exp (θ2q + g(ξ2, q) + h(θ2, ξ2))

= exp ((θ1 − θ2)q + (g(ξ1, q)− g(ξ2, q)) + (h(θ1, ξ1)− h(θ2, ξ2))) .

is a version of it. Therefore, assuming that Λ ∈M , (0, 0) ∈ Θ× Ξ, h(0, 0) = 0, and g(0, q) = 0
for every q ∈ R++ would lose no generality.

In the rest of this subsection, we let M be a quasi-log-linear family, with the Radon-
Nikodym derivatives defined by (24). Denote the distribution in M of which the Radon-
Nikodym derivative is (24) by µ(θ, ξ) and its cumulant-generating function by K(·, θ, ξ). When
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the wealth-weighted distribution of individual consumers’ discount rates is µ(θ, ξ), denote the
representative consumer’s discount rate by r(·, θ, ξ).

Lemma 1 For every (θ, ξ) ∈ Θ× Ξ and every s ∈ R with θ + s ∈ Θ,

∂K

∂s
(s, θ, ξ) = − ∂h

∂θ1
(θ + s, ξ), (26)

∂2K

∂s2
(s, θ, ξ) = − ∂2h

∂(θ1)2
(θ + s, ξ),

∂2K

∂s2
(s, θ, ξ)

∂K

∂s
(s, θ, ξ)

=

∂2h

∂(θ1)2
(θ + s, ξ)

∂h

∂θ1
(θ + s, ξ)

, . (27)

When L = 0, θ ∈ R and the results of the lemma can be more simply written as

∂K

∂s
(s, θ) = −h′(θ + s), (28)

∂2K

∂s2
(s, θ) = −h′′(θ + s), (29)

∂2K

∂s2
(s, θ)

∂K

∂s
(s, θ)

=
h′′(θ + s)
h′(θ + s)

.

Proof of Lemma 1 By a straightforward calculation,

expK(s, θ, ξ) =
∫

R++

exp ((θ + s)q + g(ξ, q) + h(θ, ξ)) dµ(q) =
exph(θ, ξ)

exph(θ + s, ξ)
.

Hence
K(s, θ, ξ) = h(θ, ξ)− h(θ + s, ξ).

By differentiating both sides with respect to s, we complete the proof. ///

The following propositions compares two representative consumers’ discount rate functions
in terms of h(θ) in the Radon-Nikodym derivative dµ(θ)/dΛ. They follow directly from Lemma
1 and Theorems 2 and 3.

Proposition 3 For all (θ1, ξ1) ∈ Θ× Ξ and (θ2, ξ2) ∈ Θ× Ξ, the following two conditions are
equivalent.

1. For every t ≥ 0,

−
∂r

∂t
(t, θ1, ξ1)

r(t, θ1, ξ1)
≥ −

∂r

∂t
(t, θ2, ξ2)

r(t, θ2, ξ2)

15



2. For every s ≤ 0,
∂2h

∂θ2
(θ1 + s, ξ1)

∂h

∂θ
(θ1 + s, ξ1)

≥
∂2h

∂θ2
(θ2 + s, ξ2)

∂h

∂θ1
(θ2 + s, ξ2)

.

Proposition 4 For all (θ1, ξ1) ∈ Θ× Ξ and (θ2, ξ2) ∈ Θ× Ξ, the following two conditions are
equivalent.

1. For every t ≥ 0, if r(t, θ1, ξ1) = r(t, θ2, ξ2), then

−∂r
∂t

(t, θ1, ξ1) > −∂r
∂t

(t, θ2, ξ2).

2. For every s ≤ 0, if
∂h

∂θ
(θ1 + s, ξ1) =

∂h

∂θ
(θ2 + s, ξ2),

then
∂2h

∂θ2
(θ1 + s, ξ1) <

∂2h

∂θ2
(θ2 + s, ξ2).

The following proposition eases the task of checking the more-convex-than relation between
two cumulant-generating functions in a quasi-linear exponential family.

Proposition 5 Suppose that the reference probability measure Λ of the quasi-linear exponential
family M is not concentrated on any single point, and that

∂h

∂θ
(θ, ξ)

∂3h

∂θ3
(θ, ξ) ≷

(
∂2h

∂θ2
(θ, ξ)

)2

(30)

for every (θ, ξ) ∈ Θ× Ξ. Then, for all θ1 ∈ Θ, θ2 ∈ Θ, and ξ ∈ Ξ, if θ1 > θ2, then

−
∂r

∂t
(t, θ1, ξ)

r(t, θ1, ξ)
≷ −

∂r

∂t
(t, θ2, ξ)

r(t, θ2, ξ)
(31)

for every t ≥ 0.

The conditions of this proposition can be written in a particularly simple form when L = 0.
Indeed, (30) can written as

h′(θ)h′′′(θ) ≷
(
h′′(θ)

)2
. (32)

While Proposition 5 allows us only to compare two distributions parameterized by (θ1, ξ1) and
(θ2, ξ2) with ξ1 = ξ2, if L = 0, then this means that it allows us to compare any two distributions
in M . For these reasons, Proposition 5 is most useful when M is a natural exponential family
in the sense of Morris (1982).
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Proof of Proposition 5 Differentiate both sides of (27) with respect to θ1, then we obtain

d
dθ




∂2K

∂s2
(s, θ, ξ)

∂K

∂s
(s, θ, ξ)


 =

1(
∂h

∂θ
(θ + s, ξ)

)2

(
∂h

∂θ
(θ + s, ξ)

∂3h

∂θ3
(θ + s, ξ)−

(
∂2h

∂θ2
(θ + s, ξ)

)2
)
.

(33)
By assumption,

∂h

∂θ
(θ + s, ξ)

∂3h

∂θ3
(θ + s, ξ)−

(
∂2h

∂θ2
(θ + s, ξ)

)2

≷ 0.

Thus,

d
dθ




∂2K

∂s2
(s, θ, ξ)

∂K

∂s
(s, θ, ξ)


 ≷ 0.

Hence, if θ1 > θ2, then
∂2K

∂s2
(s, θ1, ξ)

∂K

∂s
(s, θ1, ξ)

≷
∂2K

∂s2
(s, θ2, ξ)

∂K

∂s
(s, θ2, ξ)

.

Now (31) follows from (15). ///

5.2 Examples

In this subsection, we give four examples of quasi-log-linear families from which the approximate
wealth-weighted distributions of individual consumers’ discount rates are taken. They consist
of gamma, binomial, Poisson, and negative binomial distributions. This list does not contain,
most notably, uniform and log-normal distributions: uniform distributions do not constitute
a quasi-log-linear family, because no pair of them shares the same support; and log-normal
distributions do not constitute a quasi-log-linear family, because no linear term θq can appear
in any parameterization (θ, ξ) of the family of log-normal distributions.

Of the four families, the binomial and Poisson families are one-parameter families (L = 0),
and, thus, natural exponential families in the sense of Morris (1982). The gamma and negative
binomial families are two-parameter families (L = 1), and, thus, contain natural exponential
families, each corresponding to a fixed value of the parameter ξ ∈ Ξ. Our examples, therefore,
involves four (kinds of) natural exponential families.

We now argue that there is a good reason to investigate these four natural exponential fami-
lies. Each such family consists of probability measures µ(θ) having Radon-Nikodym derivatives
(25). By (28) and (29), the mean and variance of µ(θ) are equal to −h′(θ) and −h′′(θ). Unless
the µ(θ) are concentrated on a single point, h′ is a strictly decreasing function and, hence, its
inverse function (h′)−1 is well defined on its domain. Define a function V on the domain by
letting V (m) = −h′′ ((h′)−1(−m)

)
for every m in the domain. Then the function V , called

the variance function by Morris (1982), maps the mean to the variance of probability measures
in the natural exponential family. The distinctive feature of the four examples is that V is a
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quadratic function. Morris (1982, Section 4) found all six natural exponential families having
a quadratic V , and the two not listed here are normal distributions and generalized hyperbolic
secant distributions, which both have support R and, thus, cannot be used as a distribution
of discount rates. Our examples, therefore, exhaust all the natural exponential families with
quadratic variance functions that can be used as a distribution of discount rates.

First consider the family of gamma distributions, each with parameters α and β, that is, its
density function (with respect to Lebesgue measure) is given by

q 7→ βαqα−1

Γ(α)
exp(−βq).

Gamma distributions are most commonly used as distributions of subjective time discount rates,
as in Weitzman (2001), Gollier and Zeckhauser (2005), and Hara (2007). Weitzman (2001) also
provided an empirical justification for the use of gamma functions: he asked more than two
thousand PhD-level economists which discount factor should be used to discount the cost and
benefit of mitigating climate change, and the answers turned out to follow a gamma distribution
with mean 3.96% and standard deviation 2.94%.

Its cumulant generating function K(·, (α, β)) is given by

K(s, (α, β)) = α(lnβ − ln(β − s)).

Thus
∂2K

∂s2
(s, (α, β))

∂K

∂s
(s, (α, β))

=
1

β − s.

Hence, Theorem 2 tells us that the smaller the value of β, the more dynamically inconsistent
the representative consumer. Note that the values of the α are irrelevant for the ranking of
dynamic inconsistency.

The above proof did not rely on the fact that the gamma distributions constitute a quasi-log-
linear family. To give a proof that does use the fact, take the reference σ-finite measure Λ as the
Lebesgue measure onR++, Let L = 1, Θ = (−∞, 0), and Ξ = (−1,∞). Define g : Ξ×R++ → R

by g(ξ, q) = ξ ln q, and h : Θ× Ξ→ R by h(θ, ξ) = (ξ + 1) ln(−θ)− ln Γ(ξ + 1). Let M be the
set of all probability measures on (R++,B(R++)) for which there is a (θ, ξ) ∈ Θ×Ξ such that

dµ
dΛ

(q) = exp (θq + g(ξ, q) + h(θ, ξ)) .

Denote the above measure by µ(θ, ξ). Define ϕ : Θ→ R2
++ by ϕ(θ, ξ) = (ξ + 1,−θ). Then ϕ is

one to one and onto. Moreover, for every (α, β) ∈ R2
++, ϕ−1(α, β) = (−β, α− 1) and, hence,

dµ(ϕ−1(α, β))
dΛ

(q) = exp (−βq + (α− 1) ln q + α lnβ − ln Γ(α)) =
βαqα−1

Γ(α)
exp(−βq).

Hence µ(θ, ξ) is a probability measure and M coincides with the set of the gamma distributions.
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Moreover,

∂h

∂θ
(θ, ξ) = −1 + ξ

θ
,

∂2h

∂θ2
(θ) =

1 + ξ

θ2
.

Thus
∂2h

∂θ2
(θ)

∂h

∂θ
(θ)

= −1
θ
.

By Proposition 3, the representative consumer is more dynamically inconsistent the larger the
value of θ = −β, that is, the smaller the value of β.

Next, we consider the family of the binomial distributions that put, for some positive con-
stant ε and positive integer n, positive probabilities only on ε, 2ε, . . . , nε. To be more specific,
let α ∈ (0, 1) and, for each m ∈ {1, 2, . . . , n}, the distribution µ(α) gives mε a probability

(
n− 1
m− 1

)
αm−1(1− α)n−m. (34)

Take Λ as the counting measure on {ε, 2ε, . . . , nε}. Let L = 0 and Θ = R. Define g :
R++ → R by g(q) = ln(n − 1)! − ln B(n − q/ε, q/ε − 1), where B is the beta function, and
h : Θ → R by h(θ) = −εθ − (n − 1) ln (1 + exp(εθ)) and Let M be the set of all probability
measures µ on (R++,B(R++)) for which there is a θ ∈ Θ such that

dµ
dΛ

(q) = exp (θq + g(q) + h(θ)) .

Denote the above measure by µ(θ). Define ϕ : Θ → (0, 1) by ϕ(θ) = exp(εθ)/(1 + exp(εθ)).
Then ϕ is one to one and onto. Moreover, for every α ∈ R++, ϕ−1(α) = ε−1(lnα− ln(1− α))
and hence

dµ(ϕ−1(α))
dΛ

(q)

= exp
(
ϕ−1(α)q + g(q) + h(ϕ−1(α))

)

= exp


(lnα− ln(1− α))

(q
ε
− 1
)
− (n− 1) ln

(
1 +

α

1− α
)

+ ln
(n− 1)!

B
(
n− q

ε
,
q

ε
− 1
)



= exp



(q
ε
− 1
)

lnα−
(q
ε
− n

)
ln(1− α) + ln

(n− 1)!

B
(
n− q

ε
,
q

ε
− 1
)



=
(n− 1)!

B
(
n− q

ε
,
q

ε
− 1
)αq/ε−1(1− α)n−q/ε,
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and the last term is equal to

(
n− 1
m− 1

)
αm−1(1− α)n−m

if q = mε. Hence, µ(θ) is a probability measure and M coincides with the set of the Poisson
distributions. Moreover,

h′(θ) = −ε− (n− 1)
ε exp(εθ)

1 + exp(εθ)
,

h′′(θ) = −(n− 1)
ε2 exp(εθ)

(1 + exp(εθ))2
,

h′′′(θ) = −(n− 1)
ε3 exp(εθ)

(1 + exp(εθ))3
(1− exp(εθ)) ,

h′(θ)h′′′(θ)− (h′′(θ))2 = (n− 1)
ε4 exp(εθ)

(1 + exp(εθ))4
(1 + (n− 2) exp(2εθ)) ,

and the last term is strictly positive whenever n ≥ 2. Hence, by (32), the larger the “success”
probability α = ϕ(θ) = 1/(1 + exp(−εθ)) of the binomial distribution, the more dynamically
inconsistent the representative consumer is.

Note that the binomial distributions we used in the above example are unusual, in that each
discount rate mε with m = 1, 2, , . . . , n is given the probability (34), rather than

(
n

m

)
αm(1− α)n−m. (35)

We used these distributions because we did not wish to give any positive probability on the
zero discount rate (which would give rise to complications in the model of infinite time hori-
zon). However, even if we gave each discount rate mε with m = 0, 1, 2, . . . , n the probability
(35) (which would not give rise to complications in models of finite time horizon), we would
still obtain the same conclusion: the larger the success probability α, the more dynamically
inconsistent the representative consumer is.

Third, we consider the family of the Poisson distributions, and show that whether a change
in the parameter value of the Poisson distribution leads to a change in the degree of dynamic
inconsistency depends on whether the zero discount rate is given a positive probability. We shall
do so by using the variance function in Morris (1982), which maps the mean to the variance of
the distributions in this family.

Recall that the Poisson distribution with parameter α gives each nonnegative integer n a
probability exp(−α)αn/n!. Its mean and variance are both equal to α. Thus, if we denote
by V the variance function of the family of Poisson distributions, then V (m) = m, and hence
V (m)/m = 1 for every m. Note that V does not depend on the value of α.

Let ε > 0. Consider, first, the distribution that gives each discount rate nε with n =
0, 1, 2, . . . a probability exp(−α)αn/n!. Denote by K1(·, α) its cumulant generating function
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parameterized by α. Then ∂K1(s, α)/∂s is equal to ε times the mean of the Poisson distribution
with parameter α exp(s); and ∂2K1(s, α)/∂s2 is equal to ε2 times the variance of the Poisson
distribution with parameter α exp(s). Thus, if we denote by V1 the variance function of the
family of these distributions, then V1(m) = εm and, hence, V1(m)/m = ε for everym. Therefore,
by (12),

∂2K1

∂s2
(s, α)

∂K1

∂s
(s, α)

= ε.

Since this does not depend on the value of α, we can conclude that, if the zero discount rate
is given a positive probability, then the representative consumers are all equally dynamically
inconsistent, regardless of the values of α.

Consider, next, the distribution that gives each discount rate nε with n = 1, 2, . . . a proba-
bility exp(−α)αn−1/(n−1)!. Denote by K2(·, α) its cumulant generating function parameterized
by α. Then ∂K2(s, α)/∂s is equal to ε plus ε times the mean of the Poisson distribution with
parameter α exp(s); and ∂2K1(s, α)/∂s2 is equal to ε2 times the variance of the Poisson distri-
bution with parameter α exp(s). Thus, if we denote by V2 the variance function of the family
of these distributions, then V2(m) = ε(m − ε) and, hence, V1(m)/m = ε − ε2/m for every m.
Therefore, by (12),

∂2K2

∂s2
(s, α)

∂K2

∂s
(s, α)

= ε− ε2

∂K2

∂s
(s, α)

.

Since ∂K2(s, α)/∂s is a strictly increasing function of α, we can conclude that, if the zero
discount rate is is given zero probability, then the larger the value of α, the more dynamically
inconsistent the representative consumer is.

Finally, we consider the family of the negative binomial distributions that put, for some
positive constant ε, positive probabilities only on 0, ε, 2ε, . . . ,. To be more specific, let α ∈ (0, 1)
and β ∈ R++. Then, for each non-negative integer n, the distribution µ(α, β) gives nε a
probability (

n+ β − 1
n

)
αβ(1− α)n =

Γ(n+ β)
Γ(β)n!

αβ(1− α)n.

Note that that the zero discount rate is given a positive probability. This is to avoid difficult
calculations, but, as mentioned in the example of Poisson distributions, it would cause no
complication in models of finite time horizon.

Take Λ as the counting measure on {0, ε, 2ε, . . . }. Let L = 1, Θ = −R++, and Ξ = R++.
Define g : Ξ × R++ → R by g(ξ, q) = ln Γ(q/ε + ξ) − ln Γ(q/ε + 1), and h : Θ × Ξ → R

by h(θ, ξ) = ξ ln(1 − exp(εθ)) − ln Γ(ξ). Let M be the set of all probability measures µ on
(R++,B(R++)) for which there is a (θ, ξ) ∈ Θ× Ξ such that

dµ
dΛ

(q) = exp (θq + g(ξ, q) + h(θ, ξ)) .
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Denote the above measure by µ(θ, ξ). Define ϕ : Θ × Ξ → (0, 1) × R++ by ϕ(θ, ξ) =
(1 − exp(εθ), ξ). Then ϕ is one to one and onto. Moreover, for every (α, β) ∈ (0, 1) × R++,
ϕ−1(α, β) = (ε−1 ln(1− α), β) and hence

dµ(ϕ−1(α, β))
dΛ

(q)

= exp
((

1
ε

ln(1− α)
)
q + g(β, q) + h

(
1
ε

ln(1− α), β
))

= exp
(q
ε

ln(1− α) + ln Γ
(q
ε

+ β
)
− ln Γ

(q
ε

+ 1
)

+ β lnα− ln Γ(β)
)

=
Γ
(q
ε

+ β
)

Γ(β)Γ
(q
ε

+ 1
)αβ(1− α)q/ε,

and the last term is equal to
Γ(n+ β)
Γ(β)n!

αβ(1− α)n.

if q = nε. Hence, µ(θ) is a probability measure and M coincides with the set of the negative
binomial distributions. Moreover,

∂h

∂θ
(θ, ξ) = ξ

−ε exp(εθ)
1− exp(εθ)

,

∂2h

∂θ2
(θ, ξ)

∂h

∂θ
(θ, ξ)

=
ε

1− exp(εθ)
,

and the last term is an increasing function of θ. Thus, the smaller the value of α = 1 −
exp(εθ), the more dynamically inconsistent the representative consumer is. As in the case of
gamma distributions, the value of the other parameter, β, is irrelevant for the degree of dynamic
inconsistency.

The above two-parameter family of negative binomial distributions, parameterized by (α, β)
is not an exponential family, because Γ(n+ β) is not multiplicatively separable between n and
β. Hence, although this family is a quasi-log-linear family, it is not an exponential family.

6 Conclusion

In this paper, we have given a precise formulation to the notion that the more heterogeneous
the individual consumers’ subjective discount rates are, the more dynamically inconsistent the
representative consumer is. The result allowed us to compare the term structures of interest
rates of two heterogeneous economies. When the wealth-weighted distributions of subjective
discount rates are drawn from what we termed a quasi log-linear family, the task of determining
the more-heterogeneous-than relation is easy, and some well known distributions are shown to
constitute quasi log-linear families.

The analysis of this paper should be extended to the case where asset markets are incomplete.
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Since individual consumers have fewer instruments to transfer purchasing power across time
and states, the impact of the heterogeneity of subjective discount rates on the representative
consumer’s discount rates will be less pronounced than in the case of complete markets. To
increase the relevance of the results of this paper, it is important to determine exactly how
much the impact is reduced.
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